H.W. Prove the z-transforms for common sequences summarized in Table except the last sequence (15). Table 1 Table of z-Transform Pairs Region of Convergence Line No. x(n), n20 z-Transform X(z) 1 x(n) 2 ô(n) 1 kl>0 az au(n) kl>1 2-1 nu(n) kl>1 (z – 1)? 5 z(z+1) nu(n) kl>1 (z – 1)8 a u(n) kl> la| Z-a 7 e n u(n) (z-ea) z|>ea 8. az na" u(n) kl> la| (z - a)? z sin(a) z2 – 2z cos(a) +1 9 sin(an)u(n) kl>1 zz – cos(a)] z2 – 2z cos(a) +1 10 cos(an)u(n) z|>1 [a sin(b)]z z2 - [2a cos(b)]z +a² zz - a cos(b)] z2 - [2a cos(b)|z +a 11 a" sin(bn)u(n) zl> la| 12 a" cos(bn)u(n) kl> la| (e" sin(b)]z z? - |2e a cos(b)]z +e-2a zlz - eacos(b)] z2 - [2e" cos(b)]z+e-2a 13 e an sin(bn)u(n) kl>ea 14 e an cos(bn)u(n) kl>e a Az A'Z 2|A||P|"cos(n0 +9)u(n) where P and A are complex constants defined by P = |P|L0, A = JA20 15 Z-P Z- P* 3.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
H.W. Prove the z-transforms for common sequences summarized in Table 1
except the last sequence (15).
Table 1 Table of z-Transform Pairs
Region of
Convergence
Line No.
x(n), n20
z-Transform X(z)
x(n)
2
8(n)
1
kl>0
az
au(n)
kl>1
Z-1
nu(n)
kl>1
(z – 1)?
z(z+1)
nu(n)
kl>1
(z – 1)3
a u(n)
Iz|> la|
Z-a
e-na u(n)
kl>ea
(z -ea)
8.
az
na" u(n)
kl> la|
(2- a)
z sin(a)
z2 – 2z cos(a) +1
sin(an)u(n)
kl>1
z[z – cos(a)]
z2 – 2z cos(a) +1
10
cos(an)u(n)
kl>1
[a sin(b)]z
z2 - [2a cos(b)]z +a?
zz - a cos(b)]
z2 - [2a cos(b)]z +a
11
a" sin(bn)u(n)
z| > la|
12
a" cos(bn)u(n)
kl> la|
(e sin(b)]z
2a
z? - [2e "cos(b)z +e
13
e an sin(bn)u(n)
kl>ea
zz -e cos(b)]
z2 - [2e-a cos(b)]z +e-2a
14
an cos(bn)u(n)
kl>e •
e
Az
A*Z
2|A||P|"cos(n0 + o)u(n)
where P and A are complex
constants defined by
P = |P|Z0, A = |AZ
15
Z-P
Z- P*
6,
Transcribed Image Text:H.W. Prove the z-transforms for common sequences summarized in Table 1 except the last sequence (15). Table 1 Table of z-Transform Pairs Region of Convergence Line No. x(n), n20 z-Transform X(z) x(n) 2 8(n) 1 kl>0 az au(n) kl>1 Z-1 nu(n) kl>1 (z – 1)? z(z+1) nu(n) kl>1 (z – 1)3 a u(n) Iz|> la| Z-a e-na u(n) kl>ea (z -ea) 8. az na" u(n) kl> la| (2- a) z sin(a) z2 – 2z cos(a) +1 sin(an)u(n) kl>1 z[z – cos(a)] z2 – 2z cos(a) +1 10 cos(an)u(n) kl>1 [a sin(b)]z z2 - [2a cos(b)]z +a? zz - a cos(b)] z2 - [2a cos(b)]z +a 11 a" sin(bn)u(n) z| > la| 12 a" cos(bn)u(n) kl> la| (e sin(b)]z 2a z? - [2e "cos(b)z +e 13 e an sin(bn)u(n) kl>ea zz -e cos(b)] z2 - [2e-a cos(b)]z +e-2a 14 an cos(bn)u(n) kl>e • e Az A*Z 2|A||P|"cos(n0 + o)u(n) where P and A are complex constants defined by P = |P|Z0, A = |AZ 15 Z-P Z- P* 6,
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) Filter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,