3. SOME COMMON Z-TRANSFORM PAIRS 2. IMPORTANT PROPERTIES OF THE Z-TRANSFORM Signal Transform 1. Linearity: 1. 6[n] 1 ROC All z Za1x1(n) + a2x2(n)] = a1X1(2)+ a2X2(2); ROC: ROC, ROC 2. u[n] (4.4) 3. -u-n-1] |z| > 1 |z| < 1 2. Sample shifting: 4. 5[n—m] 2x (n-no)] =20X(2); ROC: ROC (4.5) 3. Frequency shifting: 5. au[n] az All z except 0 (if m> 0) or x (if m < 0) |z| > |a| Za" (n)] = X(); ROC: ROC, scaled by |a| (4.6) 4. Folding: 6. —au[-n − 1] 7. nan u[n] 1 1-az Zx(-n)] X (1/2); ROC: Inverted ROC (4.7) 5. Complex conjugation: Za(n)] X(); ROC: ROC (4.8) 8. -nau[―n — 1] 9. [cos won]u[n] 10. [sin won]u[n] 11. [ cos won]u[n] 12. [ sin won]u[n] 92-1 (1-az-1)2 2-1 (1-02-132 1-[cos wo]-1 1-[2 cos wo]=-1+=-2 [sin wo]z-1 1-12 cos wo]z-1+2-2 1-[r cos wo]=-1 1-[2r cos wo]z=1+r²z-2 |z| < |a| |z| > |a| |z| < |a| |z|> 1 |z| > 1 |z| > r [rsin wolz-1 1-[2rcos wo]z=1+r²z=2 |=| > T P1) Determine the z-transform of the following sequences using the z-transform table and the z-transform properties. Express X(z) as a rational function in z¹. Verify your results using MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot. - - 1. x(n) = 28(n − 2) + 3u(n − 3). 2. x(n) = 3(0.75) cos(0.3лn)u(n) + 4(0.75)" sin(0.3πn)u(n) 3. x(n) = n sin()u(n) + (0.9)”u(n − 2). 4. x(n) = n²(2/3)n−²u(n − 1). - -

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Question

please solve q3 if you cant do the matlab code its okay but i will appreciate it  using the properties of z transform and common z transfrom pairs i have given in the images thank you

3. SOME COMMON Z-TRANSFORM PAIRS
2. IMPORTANT PROPERTIES OF THE Z-TRANSFORM
Signal
Transform
1. Linearity:
1. 6[n]
1
ROC
All z
Za1x1(n) + a2x2(n)] = a1X1(2)+ a2X2(2); ROC: ROC, ROC
2. u[n]
(4.4)
3. -u-n-1]
|z| > 1
|z| < 1
2. Sample shifting:
4. 5[n—m]
2x (n-no)] =20X(2); ROC: ROC
(4.5)
3. Frequency shifting:
5. au[n]
az
All z except
0 (if m> 0) or
x (if m < 0)
|z| > |a|
Za" (n)] = X(); ROC: ROC, scaled by |a|
(4.6)
4. Folding:
6. —au[-n − 1]
7. nan u[n]
1
1-az
Zx(-n)] X (1/2); ROC: Inverted ROC
(4.7)
5. Complex conjugation:
Za(n)] X(); ROC: ROC
(4.8)
8. -nau[―n — 1]
9. [cos won]u[n]
10. [sin won]u[n]
11. [ cos won]u[n]
12. [ sin won]u[n]
92-1
(1-az-1)2
2-1
(1-02-132
1-[cos wo]-1
1-[2 cos wo]=-1+=-2
[sin wo]z-1
1-12 cos wo]z-1+2-2
1-[r cos wo]=-1
1-[2r cos wo]z=1+r²z-2
|z| < |a|
|z| > |a|
|z| < |a|
|z|> 1
|z| > 1
|z| > r
[rsin wolz-1
1-[2rcos wo]z=1+r²z=2
|=| > T
Transcribed Image Text:3. SOME COMMON Z-TRANSFORM PAIRS 2. IMPORTANT PROPERTIES OF THE Z-TRANSFORM Signal Transform 1. Linearity: 1. 6[n] 1 ROC All z Za1x1(n) + a2x2(n)] = a1X1(2)+ a2X2(2); ROC: ROC, ROC 2. u[n] (4.4) 3. -u-n-1] |z| > 1 |z| < 1 2. Sample shifting: 4. 5[n—m] 2x (n-no)] =20X(2); ROC: ROC (4.5) 3. Frequency shifting: 5. au[n] az All z except 0 (if m> 0) or x (if m < 0) |z| > |a| Za" (n)] = X(); ROC: ROC, scaled by |a| (4.6) 4. Folding: 6. —au[-n − 1] 7. nan u[n] 1 1-az Zx(-n)] X (1/2); ROC: Inverted ROC (4.7) 5. Complex conjugation: Za(n)] X(); ROC: ROC (4.8) 8. -nau[―n — 1] 9. [cos won]u[n] 10. [sin won]u[n] 11. [ cos won]u[n] 12. [ sin won]u[n] 92-1 (1-az-1)2 2-1 (1-02-132 1-[cos wo]-1 1-[2 cos wo]=-1+=-2 [sin wo]z-1 1-12 cos wo]z-1+2-2 1-[r cos wo]=-1 1-[2r cos wo]z=1+r²z-2 |z| < |a| |z| > |a| |z| < |a| |z|> 1 |z| > 1 |z| > r [rsin wolz-1 1-[2rcos wo]z=1+r²z=2 |=| > T
P1) Determine the z-transform of the following sequences using the z-transform table and the
z-transform properties. Express X(z) as a rational function in z¹. Verify your results using
MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot.
-
-
1. x(n) = 28(n − 2) + 3u(n − 3).
2. x(n) = 3(0.75) cos(0.3лn)u(n) + 4(0.75)" sin(0.3πn)u(n)
3. x(n) = n sin()u(n) + (0.9)”u(n − 2).
4. x(n) = n²(2/3)n−²u(n − 1).
-
-
Transcribed Image Text:P1) Determine the z-transform of the following sequences using the z-transform table and the z-transform properties. Express X(z) as a rational function in z¹. Verify your results using MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot. - - 1. x(n) = 28(n − 2) + 3u(n − 3). 2. x(n) = 3(0.75) cos(0.3лn)u(n) + 4(0.75)" sin(0.3πn)u(n) 3. x(n) = n sin()u(n) + (0.9)”u(n − 2). 4. x(n) = n²(2/3)n−²u(n − 1). - -
Expert Solution
steps

Step by step

Solved in 1 steps with 7 images

Blurred answer
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,