g(x) h(x) F(x) G(x) 4 7 9 6 4 2 387826 5 4 5 6 7 3 12 748 7 Which of these functions is one-to-one? 1. F(x) 2. f(x) 3. g(x) 4. h(x) 5. G(r)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Question is in picture. Please help, I am unsure of how to do this.

### Five Functions Defined by the Table

The table below displays values for five different functions, \(f(x)\), \(g(x)\), \(h(x)\), \(F(x)\), and \(G(x)\), each defined over the domain \(x = 1, 2, 3, 4, 5, 6\).

| \(x\)  | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| \(f(x)\) | 7 | 5 | 1 | 6 | 4 | 2 |
| \(g(x)\) | 4 | 7 | 9 | 6 | 4 | 2 |
| \(h(x)\) | 3 | 8 | 7 | 2 | 7 | 6 |
| \(F(x)\) | 5 | 5 | 4 | 5 | 6 | 7 |
| \(G(x)\) | 1 | 2 | 7 | 4 | 8 | 7 |

### Question:

**Which of these functions is one-to-one?**

1. \(F(x)\)
2. \(f(x)\)
3. \(g(x)\)
4. \(h(x)\)
5. \(G(x)\)

### Explanation:

A function is one-to-one if it assigns distinct outputs for distinct inputs, meaning no two different inputs \(x_1\) and \(x_2\) have the same output value. 

- **\(f(x)\)**: All values are unique.
- **\(g(x)\)**: The value \(4\) repeats.
- **\(h(x)\)**: The value \(7\) repeats.
- **\(F(x)\)**: The value \(5\) repeats.
- **\(G(x)\)**: The value \(7\) repeats.

In this context, the only function that is one-to-one is **\(f(x)\)**.
Transcribed Image Text:### Five Functions Defined by the Table The table below displays values for five different functions, \(f(x)\), \(g(x)\), \(h(x)\), \(F(x)\), and \(G(x)\), each defined over the domain \(x = 1, 2, 3, 4, 5, 6\). | \(x\) | 1 | 2 | 3 | 4 | 5 | 6 | |--------|---|---|---|---|---|---| | \(f(x)\) | 7 | 5 | 1 | 6 | 4 | 2 | | \(g(x)\) | 4 | 7 | 9 | 6 | 4 | 2 | | \(h(x)\) | 3 | 8 | 7 | 2 | 7 | 6 | | \(F(x)\) | 5 | 5 | 4 | 5 | 6 | 7 | | \(G(x)\) | 1 | 2 | 7 | 4 | 8 | 7 | ### Question: **Which of these functions is one-to-one?** 1. \(F(x)\) 2. \(f(x)\) 3. \(g(x)\) 4. \(h(x)\) 5. \(G(x)\) ### Explanation: A function is one-to-one if it assigns distinct outputs for distinct inputs, meaning no two different inputs \(x_1\) and \(x_2\) have the same output value. - **\(f(x)\)**: All values are unique. - **\(g(x)\)**: The value \(4\) repeats. - **\(h(x)\)**: The value \(7\) repeats. - **\(F(x)\)**: The value \(5\) repeats. - **\(G(x)\)**: The value \(7\) repeats. In this context, the only function that is one-to-one is **\(f(x)\)**.
Expert Solution
Step 1i

By using one to one function concept

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning