Given U (Q₁, Q₂ ) = Q ₁ * Q ₂² 1-d Y = P₁ · Q₁ + P2 L (Q₁, Q₂ ) = U- 2 (Y - P₁ Q₁ - P2Q₂) S.t. JL JQI JL JQ2 ах x ал = Solve: Q₁* = * Q₂² = * Q2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given
S.t.
JL
J QI
1
L (Q₁, Q₂ ) = U - λ (Y - P₁ Q₁ - P2 Q2)
2
JQ 2
ах
1-4
U (Q₁, Q₂) = Q₁, * Q ₂²
иса,,
P2
Q2
Y = P₁ Q₁ +
ал
Solve
=
=
.
Q₁ * =
Q₂² =
Transcribed Image Text:Given S.t. JL J QI 1 L (Q₁, Q₂ ) = U - λ (Y - P₁ Q₁ - P2 Q2) 2 JQ 2 ах 1-4 U (Q₁, Q₂) = Q₁, * Q ₂² иса,, P2 Q2 Y = P₁ Q₁ + ал Solve = = . Q₁ * = Q₂² =
Expert Solution
Step 1: Writing the Lagrange function

Given u open parentheses Q subscript 1 comma Q subscript 2 close parentheses equals Q subscript 1 superscript alpha Q subscript 2 superscript 1 minus alpha end superscript such that y equals P subscript 1 Q subscript 1 plus P subscript 2 Q subscript 2.

Consider the Lagrange function 

L open parentheses Q subscript 1 comma Q subscript 2 close parentheses equals u open parentheses Q subscript 1 comma Q subscript 2 close parentheses minus lambda open parentheses y minus P subscript 1 Q subscript 1 minus P subscript 2 Q subscript 2 close parentheses
L open parentheses Q subscript 1 comma Q subscript 2 close parentheses equals Q subscript 1 superscript alpha Q subscript 2 superscript 1 minus alpha end superscript minus lambda open parentheses y minus P subscript 1 Q subscript 1 minus P subscript 2 Q subscript 2 close parentheses.

We need to compute the derivatives and find the solution to the system of equations.

We will assume P subscript 1 comma P subscript 2 comma alpha are constants and lambda is a Lagrange multiplier.

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,