Verify that y = ODE y" + 3y' + 2y = 4x². -4e-x-2e-2x + 2x² - 6x +7 is a solution of the SHOW ALL WORK!

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Verifying the Solution of a Second-Order Ordinary Differential Equation (ODE)

Given the ODE:
\[ y'' + 3y' + 2y = 4x^2 \]

We need to verify that:
\[ y = -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \]

is a solution.

#### Step-by-Step Solution:

1. **First Derivative (\( y' \))**:
   Given \( y \):
   \[ y = -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \]

   Compute \( y' \):
   \[
   y' = \frac{d}{dx} \left( -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \right)
   \]
   \[
   y' = 4e^{-x} + 4e^{-2x} + 4x - 6
   \]

2. **Second Derivative (\( y'' \))**:
   Given \( y' \):
   \[ y' = 4e^{-x} + 4e^{-2x} + 4x - 6 \]

   Compute \( y'' \):
   \[
   y'' = \frac{d}{dx} \left( 4e^{-x} + 4e^{-2x} + 4x - 6 \right)
   \]
   \[
   y'' = -4e^{-x} - 8e^{-2x} + 4
   \]

3. **Substitute \( y \), \( y' \), and \( y'' \) into the ODE**:
   \[
   y'' + 3y' + 2y = 4x^2
   \]

   Substitute the computed values:
   \[
   (-4e^{-x} - 8e^{-2x} + 4) + 3(4e^{-x} + 4e^{-2x} + 4x - 6) + 2(-4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7)
   \]

4
Transcribed Image Text:### Verifying the Solution of a Second-Order Ordinary Differential Equation (ODE) Given the ODE: \[ y'' + 3y' + 2y = 4x^2 \] We need to verify that: \[ y = -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \] is a solution. #### Step-by-Step Solution: 1. **First Derivative (\( y' \))**: Given \( y \): \[ y = -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \] Compute \( y' \): \[ y' = \frac{d}{dx} \left( -4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7 \right) \] \[ y' = 4e^{-x} + 4e^{-2x} + 4x - 6 \] 2. **Second Derivative (\( y'' \))**: Given \( y' \): \[ y' = 4e^{-x} + 4e^{-2x} + 4x - 6 \] Compute \( y'' \): \[ y'' = \frac{d}{dx} \left( 4e^{-x} + 4e^{-2x} + 4x - 6 \right) \] \[ y'' = -4e^{-x} - 8e^{-2x} + 4 \] 3. **Substitute \( y \), \( y' \), and \( y'' \) into the ODE**: \[ y'' + 3y' + 2y = 4x^2 \] Substitute the computed values: \[ (-4e^{-x} - 8e^{-2x} + 4) + 3(4e^{-x} + 4e^{-2x} + 4x - 6) + 2(-4e^{-x} - 2e^{-2x} + 2x^2 - 6x + 7) \] 4
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,