Given the table f(r) 1 0.223891 4 0.39715 Use the second degree Newton's divided difference formula to obtain f ro, 1]+ f 1, 12] + f (To, T1, T2] a. -0.679192 O b. 1 O c. None of the options O d. -1.025861 O e. -0.524773

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

DO NOT COPY FROM OTHER WEBSITES

Correct and detailed answer will be Upvoted else downvoted. Thank you!

Given the table:

\[
\begin{array}{c|c}
x & f(x) \\
\hline
0 & 1 \\
2 & 0.223891 \\
4 & -0.39715 \\
\end{array}
\]

Use the second degree Newton's divided difference formula to obtain \( f[x_0, x_1] + f[x_1, x_2] + f[x_0, x_1, x_2] \).

Options:
- a. \(-0.679192\)
- b. \(1\)
- c. None of the options
- d. \(-1.025861\)
- e. \(-0.524773\)
Transcribed Image Text:Given the table: \[ \begin{array}{c|c} x & f(x) \\ \hline 0 & 1 \\ 2 & 0.223891 \\ 4 & -0.39715 \\ \end{array} \] Use the second degree Newton's divided difference formula to obtain \( f[x_0, x_1] + f[x_1, x_2] + f[x_0, x_1, x_2] \). Options: - a. \(-0.679192\) - b. \(1\) - c. None of the options - d. \(-1.025861\) - e. \(-0.524773\)
Expert Solution
Step 1

To use the second degree newtons divided difference formula to obtain the given value. 

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,