Given the state-space equations X(t) = [21]x(t) + [1] u(t) y(t) = [1 0]X(t) +u(t) (u(t)= 1,t≥ 0) If x(0) = [1], what is y(2)? [1]u(t)_and

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### State-Space Equations Problem

**Given the state-space equations:**

\[ \dot{x}(t) = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \]

**and**

\[ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + u(t) \]

**where** \( u(t) = 1, t \geq 0 \).

**Initial conditions:**

\[ x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

**Problem:**

What is \( y(2) \)?

---

### Explanation:

This problem involves evaluating the state-space representation of a dynamic system. It requires the determination of the output \( y(t) \) at time \( t = 2 \) given initial conditions and a control input. The matrices describe the system's dynamics and how the input \( u(t) \) influences the states and output.
Transcribed Image Text:### State-Space Equations Problem **Given the state-space equations:** \[ \dot{x}(t) = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \] **and** \[ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + u(t) \] **where** \( u(t) = 1, t \geq 0 \). **Initial conditions:** \[ x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] **Problem:** What is \( y(2) \)? --- ### Explanation: This problem involves evaluating the state-space representation of a dynamic system. It requires the determination of the output \( y(t) \) at time \( t = 2 \) given initial conditions and a control input. The matrices describe the system's dynamics and how the input \( u(t) \) influences the states and output.
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,