Given the Pythagorean theorem a² + b² = c² where a and b are the lengths of the perpendicular sides of a right triangle and c is the length of the hypotenuse. Derive the trigonometric identity sin² (0) + cos² (0) = 1.
Given the Pythagorean theorem a² + b² = c² where a and b are the lengths of the perpendicular sides of a right triangle and c is the length of the hypotenuse. Derive the trigonometric identity sin² (0) + cos² (0) = 1.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![Given the Pythagorean theorem
\[ a^2 + b^2 = c^2 \]
where \( a \) and \( b \) are the lengths of the perpendicular sides of a right triangle and \( c \) is the length of the hypotenuse. Derive the trigonometric identity
\[ \sin^2(\theta) + \cos^2(\theta) = 1. \]
Explanation:
1. **Pythagorean Theorem**: The theorem states that in a right triangle, the square of the length of the hypotenuse \( c \) is equal to the sum of the squares of the lengths of the other two sides \( a \) and \( b \).
2. **Right Triangle Definitions**:
- Sine of angle \( \theta \): \(\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}\)
- Cosine of angle \( \theta \): \(\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\)
3. **Expressing in terms of a, b, and c**:
- Let us assume that in the given right triangle, side \( a \) is opposite to angle \( \theta \), side \( b \) is adjacent to angle \( \theta \), and \( c \) is the hypotenuse.
- Then \(\sin(\theta) = \frac{a}{c}\) and \(\cos(\theta) = \frac{b}{c}\).
4. **Square both sides**:
- \(\sin^2(\theta) = \left(\frac{a}{c}\right)^2 = \frac{a^2}{c^2}\)
- \(\cos^2(\theta) = \left(\frac{b}{c}\right)^2 = \frac{b^2}{c^2}\)
5. **Add the squared terms**:
- \(\sin^2(\theta) + \cos^2(\theta) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2}\)
6. **Apply the Pythagorean theorem**:
- According to the Pythagorean theorem, \( a^2 +](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa1d592a5-ec96-4b1d-bddf-23e27014debe%2Fad3f891d-1f67-43af-8ad3-fce80b707028%2Fch0vlpg_processed.png&w=3840&q=75)
Transcribed Image Text:Given the Pythagorean theorem
\[ a^2 + b^2 = c^2 \]
where \( a \) and \( b \) are the lengths of the perpendicular sides of a right triangle and \( c \) is the length of the hypotenuse. Derive the trigonometric identity
\[ \sin^2(\theta) + \cos^2(\theta) = 1. \]
Explanation:
1. **Pythagorean Theorem**: The theorem states that in a right triangle, the square of the length of the hypotenuse \( c \) is equal to the sum of the squares of the lengths of the other two sides \( a \) and \( b \).
2. **Right Triangle Definitions**:
- Sine of angle \( \theta \): \(\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}\)
- Cosine of angle \( \theta \): \(\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\)
3. **Expressing in terms of a, b, and c**:
- Let us assume that in the given right triangle, side \( a \) is opposite to angle \( \theta \), side \( b \) is adjacent to angle \( \theta \), and \( c \) is the hypotenuse.
- Then \(\sin(\theta) = \frac{a}{c}\) and \(\cos(\theta) = \frac{b}{c}\).
4. **Square both sides**:
- \(\sin^2(\theta) = \left(\frac{a}{c}\right)^2 = \frac{a^2}{c^2}\)
- \(\cos^2(\theta) = \left(\frac{b}{c}\right)^2 = \frac{b^2}{c^2}\)
5. **Add the squared terms**:
- \(\sin^2(\theta) + \cos^2(\theta) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2}\)
6. **Apply the Pythagorean theorem**:
- According to the Pythagorean theorem, \( a^2 +
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning