Given the function: (1x₁4) = log1 _log (x² - 3(4+2)) x+4- Domain: Denominator can not be fero X+41+0 x+y #1 and input to legarithm Junction S01 x ² - 3 14+2) So or Domain': x²-34-6 > 0 -3y > -x²+6 Multiplying by 1-1 to both sides 34 < x²-6. 6 ។ 4 c of (x, 4) ER² : x+y #1 and 4²x²2/6 3 of [x₁4) ER²: x+y #1, and x² > 34+67 4 x²-6 3 2 can not be negative 4 x+y #1 22 > 31472) Range Range of this function. X can not be defined.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

TRANSCRIBE IN DIGITAL FORMTA THE FOLLOWING PROBLEM (WITH THE GRAPH IN DIGITAL FORMAT)

Given the function:
f(x+4)
Domain: Denominator can not be ferro
x+y+ #0
x+y $1
and
or
log (x² - 3(4+2))
x+4-1
input to legarithm Junction can not be negative
Soi
x² - 3 14+2) So
1
Domain:
x²-34-6 > O
-34 > -x²+6t
Multiplying by 1-1 to both sides
2.-6.
зус
6
ус
of [x₁4) ER² : x+y #1 and 4² x ²2 6 4
of [x₁4] ER²: x+y #1, and x² > 34+67
4 2
4
Range! Range
2
-2² > 3 (4+2)
g
2
x²-6
3
this
4
6
x+y #1
function
x
can not be defined.
Transcribed Image Text:Given the function: f(x+4) Domain: Denominator can not be ferro x+y+ #0 x+y $1 and or log (x² - 3(4+2)) x+4-1 input to legarithm Junction can not be negative Soi x² - 3 14+2) So 1 Domain: x²-34-6 > O -34 > -x²+6t Multiplying by 1-1 to both sides 2.-6. зус 6 ус of [x₁4) ER² : x+y #1 and 4² x ²2 6 4 of [x₁4] ER²: x+y #1, and x² > 34+67 4 2 4 Range! Range 2 -2² > 3 (4+2) g 2 x²-6 3 this 4 6 x+y #1 function x can not be defined.
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,