Family of Curves
A family of curves is a group of curves that are each described by a parametrization in which one or more variables are parameters. In general, the parameters have more complexity on the assembly of the curve than an ordinary linear transformation. These families appear commonly in the solution of differential equations. When a constant of integration is added, it is normally modified algebraically until it no longer replicates a plain linear transformation. The order of a differential equation depends on how many uncertain variables appear in the corresponding curve. The order of the differential equation acquired is two if two unknown variables exist in an equation belonging to this family.
XZ Plane
In order to understand XZ plane, it's helpful to understand two-dimensional and three-dimensional spaces. To plot a point on a plane, two numbers are needed, and these two numbers in the plane can be represented as an ordered pair (a,b) where a and b are real numbers and a is the horizontal coordinate and b is the vertical coordinate. This type of plane is called two-dimensional and it contains two perpendicular axes, the horizontal axis, and the vertical axis.
Euclidean Geometry
Geometry is the branch of mathematics that deals with flat surfaces like lines, angles, points, two-dimensional figures, etc. In Euclidean geometry, one studies the geometrical shapes that rely on different theorems and axioms. This (pure mathematics) geometry was introduced by the Greek mathematician Euclid, and that is why it is called Euclidean geometry. Euclid explained this in his book named 'elements'. Euclid's method in Euclidean geometry involves handling a small group of innately captivate axioms and incorporating many of these other propositions. The elements written by Euclid are the fundamentals for the study of geometry from a modern mathematical perspective. Elements comprise Euclidean theories, postulates, axioms, construction, and mathematical proofs of propositions.
Lines and Angles
In a two-dimensional plane, a line is simply a figure that joins two points. Usually, lines are used for presenting objects that are straight in shape and have minimal depth or width.
Use a software program or a graphing utility to find (a) ∣A∣, (b) ∣AT∣, (c) ∣A2∣, (d) ∣2A∣, and (e) ∣A−1∣.
Given,
To find |A|
By using technology follow below steps:
1) To enter the Matrix Editor, press [matrix](above the x inverse key). The calculators contain predefined matrix variables labeled [A] through [J].
2) The “NAMES” column in the Matrix Editor is where we will choose a matrix after it has been created. The “EDIT” column looks just like the “NAMES” column, except this is where we input or edit a matrix. The “MATH” column contains special commands that only work with matrices, some of which we will discuss later.
3) Press the right arrow key twice over to the “EDIT” column. Use the up, down arrow keys to select a matrix name. Let’s use [A] since it is already selected, so press ENTER
4) Calculator displays by default 1 by 1 matrix, change there to 4 by 4
5) Return to the Matrix Editor
Notice that [A] now has the dimension of our matrix beside it.
This is how we know that a matrix has already been entered into the calculator
6) Go to matrix editor select MATH and select first option of determinnat.
7) Go to matrix editor and select matrix A.
8) Press ENTER it will display the value of determinant as -312
To find determinant of A transpose.
To find A transpose by interchanging rows and column
Follow the same procedure as above,
It give |AT| = -312
Step by step
Solved in 6 steps with 1 images