Given: GE bisects ZDEF, ZD=ZF Prove: ADGE = AFGE Symmetric property Reflexive property Transitive property Definition of midpoint Definition of angle bisector ASA SSS AAS SAS Statement Reason 1. GE bisects ZDEF 1. Given 2. ZDz ZF 2. Given 3. ZDEG= ZFEG 3. 4. GE=GE 4. 5. ΔDGE Δ'GE 5.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Topic Video
Question
100%

Justify the reasons for the proof.

**Title:** Justify the Reasons for the Proof

**Given:** 
- \( \overline{GE} \) bisects \( \angle DEF \)
- \( \angle D \cong \angle F \)

**Prove:** 
- \( \triangle DGE \cong \triangle FGE \)

**Diagram Overview:**
- The diagram features triangle \(DEF\) with point \(G\) on line \(EF\), creating two separate triangles, \(DGE\) and \(FGE\). Line \(GE\) is shown as an angle bisector of \( \angle DEF \).

**Proof Structure:**

| **Statement**                              | **Reason**                           |
|--------------------------------------------|--------------------------------------|
| 1. \( \overline{GE} \) bisects \( \angle DEF \) | 1. Given                               |
| 2. \( \angle D \cong \angle F \)               | 2. Given                               |
| 3. \( \angle DEG \cong \angle FEG \)           | 3.                                      |
| 4. \( \overline{GE} \cong \overline{GE} \)    | 4.                                      |
| 5. \( \triangle DGE \cong \triangle FGE \)    | 5.                                      |

**Reasons Key:**
- Symmetric property
- Reflexive property
- Transitive property
- Definition of midpoint
- Definition of angle bisector
- ASA (Angle-Side-Angle)
- SSS (Side-Side-Side)
- AAS (Angle-Angle-Side)
- SAS (Side-Angle-Side)

Each reason must be justified using the properties or definitions listed in the key.
Transcribed Image Text:**Title:** Justify the Reasons for the Proof **Given:** - \( \overline{GE} \) bisects \( \angle DEF \) - \( \angle D \cong \angle F \) **Prove:** - \( \triangle DGE \cong \triangle FGE \) **Diagram Overview:** - The diagram features triangle \(DEF\) with point \(G\) on line \(EF\), creating two separate triangles, \(DGE\) and \(FGE\). Line \(GE\) is shown as an angle bisector of \( \angle DEF \). **Proof Structure:** | **Statement** | **Reason** | |--------------------------------------------|--------------------------------------| | 1. \( \overline{GE} \) bisects \( \angle DEF \) | 1. Given | | 2. \( \angle D \cong \angle F \) | 2. Given | | 3. \( \angle DEG \cong \angle FEG \) | 3. | | 4. \( \overline{GE} \cong \overline{GE} \) | 4. | | 5. \( \triangle DGE \cong \triangle FGE \) | 5. | **Reasons Key:** - Symmetric property - Reflexive property - Transitive property - Definition of midpoint - Definition of angle bisector - ASA (Angle-Side-Angle) - SSS (Side-Side-Side) - AAS (Angle-Angle-Side) - SAS (Side-Angle-Side) Each reason must be justified using the properties or definitions listed in the key.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Quadrilaterals
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning