Given below is the second-order system of differential equations:  d2x/dt2 = -x - 3y, d2y/dt2 = -3x - y  The coefficient matrix is as follows:  [-1 -3] [-3 -1] It has eigenvectors  [1]          [-1] [1]  and   [1] and the corresponding eigenvalues are -4 and 2.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Given below is the second-order system of differential equations: 

d2x/dt2 = -x - 3y, d2y/dt2 = -3x - y 

The coefficient matrix is as follows: 

[-1 -3]
[-3 -1]

It has eigenvectors 

[1]          [-1]
[1]  and   [1]

and the corresponding eigenvalues are -4 and 2. 

There are 5 options to choose from, please calculate the general solution 

[*] = C₁ [1] cos(24) + C₂ [¹] sin(2t) + C₂ [₁²¹] e¹² + 0₂ [₁¹] -√²
C3
e√²t C₁
-2t
[;)] = a[1¹] ~* + ¤ [1¹] - * - ¤ [i] *x{√/2t) + C+ [1] sin(√²2t)
e²t C₂
e + C3
C4
e²t C₂
-2t
+ a[¦] •*+a[1²¹] ²² - ¤ [₁¹] -√³
C3
√2t
+ C4
[i] = a[i]
H
[:] =^ [H]₁
cos(2t) + C₂
[i] sin (20) + C₂ [1¹] com({√/2t) + C₂ [1¹] sin(√/žt)
sin(2t) C3
[] = a[]* + a[i] + " + a[₁¹] cos(√28) + Cc [ ₁¹ ] sin (√/28)
H e
C₁
-2t
e²t
C3
C4
Transcribed Image Text:[*] = C₁ [1] cos(24) + C₂ [¹] sin(2t) + C₂ [₁²¹] e¹² + 0₂ [₁¹] -√² C3 e√²t C₁ -2t [;)] = a[1¹] ~* + ¤ [1¹] - * - ¤ [i] *x{√/2t) + C+ [1] sin(√²2t) e²t C₂ e + C3 C4 e²t C₂ -2t + a[¦] •*+a[1²¹] ²² - ¤ [₁¹] -√³ C3 √2t + C4 [i] = a[i] H [:] =^ [H]₁ cos(2t) + C₂ [i] sin (20) + C₂ [1¹] com({√/2t) + C₂ [1¹] sin(√/žt) sin(2t) C3 [] = a[]* + a[i] + " + a[₁¹] cos(√28) + Cc [ ₁¹ ] sin (√/28) H e C₁ -2t e²t C3 C4
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,