Given any natural number ne N. Suppose that a, y> 0, then (z + y)2m > zn + 2ngn 1y 27n Proof: Suppose that S(n) corresponds to the statement. It is true for n = 1. Suppose it is true for n >1. Then (z + y)" (x + y)² (22m + 2na2n y) (z² + 2ay + y?) + 2nanly |3| Therefore S(n + 1) is true whenever S(n) is true. True False

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given any natural number ne N. Suppose that z, y> 0, then
(z + y)2n > zn + 2nan 1y
Proof: Suppose that S(n) corresponds to the statement. It is true for n = 1. Suppose it is true for n > 1. Then
(z + y)2" (x + y)²
= (22m + 2na2n y) (z² + 2ry + y²)
(* + y)(n11)
z2n 2
+ 2nan'y
Therefore S(m + 1) is true whenever S(n) is true.
True
False
Transcribed Image Text:Given any natural number ne N. Suppose that z, y> 0, then (z + y)2n > zn + 2nan 1y Proof: Suppose that S(n) corresponds to the statement. It is true for n = 1. Suppose it is true for n > 1. Then (z + y)2" (x + y)² = (22m + 2na2n y) (z² + 2ry + y²) (* + y)(n11) z2n 2 + 2nan'y Therefore S(m + 1) is true whenever S(n) is true. True False
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,