Given an argument: Vx(S(х) > Н(х)) Ex(R(x) ^¬H(x)) .. 3x(R(x) ^¬S(x)) Below show the proofing steps of this argument in formal reasoning. 1. Ex(R(x) ^¬S(x)) 3. R(()л-Н() P 2. P 2, EI 4. (t) 5. —Н() 3, SIMP 3, SIMP 6. S(t) → H(t) 7. ¬S(t) 8. R(t) ^¬S(t) 9. Ix(R(x) ^¬S(x)) 1, UI 5, 6, Y 4, 7, Conj 8, EG What should be X? А. S() —> H(t) В. R(*)л—Н(х) С. Уx(S(x) —> Н(х)) D. 3x(R(x) ^¬S(x)) E. None of the above

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Need this answer. Thank you

Given an argument:
Vx(S(х) > Н(х))
Ex(R(x) ^¬H(x))
.. 3x(R(x) ^¬S(x))
Below show the proofing steps of this argument in formal reasoning.
1.
Ex(R(x) ^¬S(x))
3. R(()л-Н()
P
2.
P
2, EI
4. (t)
5. —Н()
3, SIMP
3, SIMP
6. S(t) → H(t)
7. ¬S(t)
8. R(t) ^¬S(t)
9. Ix(R(x) ^¬S(x))
1, UI
5, 6, Y
4, 7, Conj
8, EG
What should be X?
А. S() —> H(t)
В. R(*)л—Н(х)
С. Уx(S(x) —> Н(х))
D. 3x(R(x) ^¬S(x))
E. None of the above
Transcribed Image Text:Given an argument: Vx(S(х) > Н(х)) Ex(R(x) ^¬H(x)) .. 3x(R(x) ^¬S(x)) Below show the proofing steps of this argument in formal reasoning. 1. Ex(R(x) ^¬S(x)) 3. R(()л-Н() P 2. P 2, EI 4. (t) 5. —Н() 3, SIMP 3, SIMP 6. S(t) → H(t) 7. ¬S(t) 8. R(t) ^¬S(t) 9. Ix(R(x) ^¬S(x)) 1, UI 5, 6, Y 4, 7, Conj 8, EG What should be X? А. S() —> H(t) В. R(*)л—Н(х) С. Уx(S(x) —> Н(х)) D. 3x(R(x) ^¬S(x)) E. None of the above
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,