Given a periodic function f with period 27: if -n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given a periodic function f with period 27:
if -n <I<0
f(x) =
(x – n)², if 0 < r <a
(a) Show that the Fourier series expansion of the function f is
sin [(2n – 1)a]
(2n – 1)3
f(a) =D +Σ[ cos(nur) +
(-1)"_
sin(næ) -
cos(n.r) +
n=1
n=1
(Hint: Fourier series:
f(x) :
() + b, sin (")]
a, cos
n=1
where
| f(r)dr
do
f(x) cos
dr n = 1,2, ...
an =
and
b
| f(x) sin () d.x n = 1,2, ...)
(b) Use the result of (a), to show that
(c) Using (a) to show the following:
(-1)n+1
and
n2
12
n=1
||
-
Transcribed Image Text:Given a periodic function f with period 27: if -n <I<0 f(x) = (x – n)², if 0 < r <a (a) Show that the Fourier series expansion of the function f is sin [(2n – 1)a] (2n – 1)3 f(a) =D +Σ[ cos(nur) + (-1)"_ sin(næ) - cos(n.r) + n=1 n=1 (Hint: Fourier series: f(x) : () + b, sin (")] a, cos n=1 where | f(r)dr do f(x) cos dr n = 1,2, ... an = and b | f(x) sin () d.x n = 1,2, ...) (b) Use the result of (a), to show that (c) Using (a) to show the following: (-1)n+1 and n2 12 n=1 || -
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,