A periodic function f(t) has a Fourier series ∞ F(t) = 1 + (n ²) cos(nnt) + Σ n=1 Select one: Select the option that gives first few terms of the Fourier series up to and including terms involving 3πt. 1 + cos(at) 1 19 Ž (-(-1)² + ¹) n 1 10 sin(nat). 21
A periodic function f(t) has a Fourier series ∞ F(t) = 1 + (n ²) cos(nnt) + Σ n=1 Select one: Select the option that gives first few terms of the Fourier series up to and including terms involving 3πt. 1 + cos(at) 1 19 Ž (-(-1)² + ¹) n 1 10 sin(nat). 21
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![A periodic function f(t) has a Fourier series
F(t) = 1 + Σ (n−²) cos(nat) +
n=1
Select one:
O
O
O
−(−1)" +1
+ Σ(¯-
(=
n=1
Select the option that gives first few terms of the Fourier series up to and including
terms involving 3πt.
n
1
1
1 + cos(πt) + cos(2πt) +
4
9
1+ cos(nt) + cos(2πt) + cos(3πt) + 2 sin(2πt)
1
1
1 + cos(πt) + = cos(2πt) +
4
9
1
1
1 + cos(πt) + = cos(2nt) +
4
9
cos(3πt) + sin(πt) +
1
sin(nat).
3
sin(3πt)
2
cos(3πt) + 2 sin(πt) + sin(3πt)
3
O 1+ cos(at) + cos(2πt) + cos(3πt) + 2 sin(nt) + 2 sin(3mt)
cos(3mt) + sin(2πt)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0f7a3efc-b3ca-4051-8db3-5036d847891b%2F8b07320a-00e5-42ca-96b5-8a45d7c24d17%2Fy0wm9dr_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A periodic function f(t) has a Fourier series
F(t) = 1 + Σ (n−²) cos(nat) +
n=1
Select one:
O
O
O
−(−1)" +1
+ Σ(¯-
(=
n=1
Select the option that gives first few terms of the Fourier series up to and including
terms involving 3πt.
n
1
1
1 + cos(πt) + cos(2πt) +
4
9
1+ cos(nt) + cos(2πt) + cos(3πt) + 2 sin(2πt)
1
1
1 + cos(πt) + = cos(2πt) +
4
9
1
1
1 + cos(πt) + = cos(2nt) +
4
9
cos(3πt) + sin(πt) +
1
sin(nat).
3
sin(3πt)
2
cos(3πt) + 2 sin(πt) + sin(3πt)
3
O 1+ cos(at) + cos(2πt) + cos(3πt) + 2 sin(nt) + 2 sin(3mt)
cos(3mt) + sin(2πt)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)