Given a function G(r) with cylindrical symmetry show the following 17. (eylindrical surface G(r)da = 2 L r G(r)+ 4 G(r) r dr radius R length "L" %3D cylindrical surface radius R length_"L" G(r)dV = 2 1 L G(r) r dr 18.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given a function \( G(r) \) with cylindrical symmetry, show the following:

17. 
\[
\int_{\text{cylindrical surface}}^{\text{radius } R, \text{ length } "L"} G(r) \, da = 2 \cdot \pi \cdot L \cdot r \cdot G(r) + 4 \cdot \pi \int_0^R G(r) \cdot r \cdot dr
\]

18.
\[
\int_{\text{cylindrical surface}}^{\text{radius } R, \text{ length } "L"} G(r) \, dV = 2 \cdot \pi \cdot L \int_0^R G(r) \cdot r \cdot dr
\]
Transcribed Image Text:Given a function \( G(r) \) with cylindrical symmetry, show the following: 17. \[ \int_{\text{cylindrical surface}}^{\text{radius } R, \text{ length } "L"} G(r) \, da = 2 \cdot \pi \cdot L \cdot r \cdot G(r) + 4 \cdot \pi \int_0^R G(r) \cdot r \cdot dr \] 18. \[ \int_{\text{cylindrical surface}}^{\text{radius } R, \text{ length } "L"} G(r) \, dV = 2 \cdot \pi \cdot L \int_0^R G(r) \cdot r \cdot dr \]
Expert Solution
Step 1

Use the formula,

Radius_R_length_'L'Cylindrical_surface Gr da= Gr r dϕ dz+2r dr dϕ

And  

Radius_R_length_'L'Cylindrical_surface Gr dV=Gr r dr dϕ dz

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,