[10] (1) GIVEN: The surface : xy + 2xz+ z = z² + y2 + 2, and the point Po= (1,-1,1). Note that P.. FIND: The equation of the tangent plane, ♂, to £ so that the point P, is the point of tangency. EXPRESS your answer in the form: O: ax+by+cz = d
[10] (1) GIVEN: The surface : xy + 2xz+ z = z² + y2 + 2, and the point Po= (1,-1,1). Note that P.. FIND: The equation of the tangent plane, ♂, to £ so that the point P, is the point of tangency. EXPRESS your answer in the form: O: ax+by+cz = d
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
For the first image attached please do the calculations similar to the second image attached
![[10] (1)
GIVEN: The surface : xy + 2xz+z
z² + y2 + 2,
and the point P₁ = (1,– 1,1). Note that P. L.
=
FIND: The equation of the tangent plane, o, to
so that the point Po is the point of tangency.
EXPRESS your answer in the form: O: ax+by+cz = d](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd94a5c19-4420-43ed-9c79-c568d2a1de91%2Ff9c11429-de25-4da8-8172-1f88658ace19%2Fxjpsvbp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:[10] (1)
GIVEN: The surface : xy + 2xz+z
z² + y2 + 2,
and the point P₁ = (1,– 1,1). Note that P. L.
=
FIND: The equation of the tangent plane, o, to
so that the point Po is the point of tangency.
EXPRESS your answer in the form: O: ax+by+cz = d
![[10] (1) GIVEN: The surface 2: 2xy + yz² = 7+2xz+z²,
and the point P₁ = (1, 2, 3). Note that P. Q.
FIND: The equation of the tangent plane, o, to
so that the point Po is the point of tangency.
EXPRESS your answer in the form: o: ax+by+ cz = d
METHOD:
Q: 2xy + yz² = 7+2xz+z²
-
2zJ-2zz +yz² − z² = 7
DEFINE F: R³
R₂
F(x, y, z) = 2xy − 2xz+yz²_z²
▼F = (²y-27, 2x+z²,−2x+2yz−2z)
⇒ VF(1,2,3) = (-2,11,4)
Hence,
O: −2(x-1)+11(7-2) + 4(z-3) = 0
O: 2x +11y + 4z = 32](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd94a5c19-4420-43ed-9c79-c568d2a1de91%2Ff9c11429-de25-4da8-8172-1f88658ace19%2F1s0f3y_processed.png&w=3840&q=75)
Transcribed Image Text:[10] (1) GIVEN: The surface 2: 2xy + yz² = 7+2xz+z²,
and the point P₁ = (1, 2, 3). Note that P. Q.
FIND: The equation of the tangent plane, o, to
so that the point Po is the point of tangency.
EXPRESS your answer in the form: o: ax+by+ cz = d
METHOD:
Q: 2xy + yz² = 7+2xz+z²
-
2zJ-2zz +yz² − z² = 7
DEFINE F: R³
R₂
F(x, y, z) = 2xy − 2xz+yz²_z²
▼F = (²y-27, 2x+z²,−2x+2yz−2z)
⇒ VF(1,2,3) = (-2,11,4)
Hence,
O: −2(x-1)+11(7-2) + 4(z-3) = 0
O: 2x +11y + 4z = 32
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)