Give the rank and the nullity of the matrix. - [3 3] rank(A) nullity(A) A = = = 10-1 3 3
Give the rank and the nullity of the matrix. - [3 3] rank(A) nullity(A) A = = = 10-1 3 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Matrix Rank and Nullity Calculation**
*Problem Statement:*
Determine the rank and the nullity of the matrix \( A \).
*Matrix \( A \)*:
\[
A = \begin{bmatrix}
1 & 0 & -1 \\
3 & 3 & 3
\end{bmatrix}
\]
*Definitions*:
- **Rank of a Matrix**: The rank is the dimension of the column space (or row space) of the matrix. It represents the number of linearly independent columns.
- **Nullity of a Matrix**: The nullity is the dimension of the kernel (or null space) of the matrix. It represents the number of solutions to the homogeneous equation \( A\mathbf{x} = \mathbf{0} \) other than the trivial solution.
*Statement to Solve:*
- rank(A) = [ ]
- nullity(A) = [ ]
*Conceptual Explanation*:
- For a matrix with \( m \) columns, the rank and nullity are related by the equation: \[ \text{rank}(A) + \text{nullity}(A) = m \]
Please compute the required values for \( \text{rank}(A) \) and \( \text{nullity}(A) \) using these definitions and equations.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F992f5037-f1cc-4483-8aa3-731b184958ad%2F099b7259-f50f-43be-a8bf-fedc1ac68b94%2Frogesho_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Matrix Rank and Nullity Calculation**
*Problem Statement:*
Determine the rank and the nullity of the matrix \( A \).
*Matrix \( A \)*:
\[
A = \begin{bmatrix}
1 & 0 & -1 \\
3 & 3 & 3
\end{bmatrix}
\]
*Definitions*:
- **Rank of a Matrix**: The rank is the dimension of the column space (or row space) of the matrix. It represents the number of linearly independent columns.
- **Nullity of a Matrix**: The nullity is the dimension of the kernel (or null space) of the matrix. It represents the number of solutions to the homogeneous equation \( A\mathbf{x} = \mathbf{0} \) other than the trivial solution.
*Statement to Solve:*
- rank(A) = [ ]
- nullity(A) = [ ]
*Conceptual Explanation*:
- For a matrix with \( m \) columns, the rank and nullity are related by the equation: \[ \text{rank}(A) + \text{nullity}(A) = m \]
Please compute the required values for \( \text{rank}(A) \) and \( \text{nullity}(A) \) using these definitions and equations.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Reduce A to echelon form
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)