Give the general solution of the differential equation -5x y"+ 10y'+ 25 y =3xe a) O y=C, e*+ C,xe -Sx -5x хе 3 2 - 2 1 b) O y=C, e*+C,xe -5x -5x -5x e 2 3 c) O y=C, e*+ C,xe° -5x 3 -X + 5 d) O y=C, e*+C,xe+- -5x -5x -5x e 2 -5x 1 + xs- f O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

**Problem Statement:**

Give the general solution of the differential equation:
\[ y'' + 10y' + 25y = 3xe^{-5x} \]

**Options:**

a) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - 3x - \frac{3}{2}x^2 \)

b) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - \frac{1}{2} e^{-5x} x^3 \)

c) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - 3x + \frac{3}{2}x^2 \)

d) \( y = C_1 e^{-5x} + C_2 xe^{-5x} + \frac{5}{2} e^{-5x} x^3 \)

e) \( y = C_1 e^{-5x} + C_2 xe^{-5x} + \frac{1}{2} e^{-5x} x^3 \)

f) None of the above.
Transcribed Image Text:**Problem Statement:** Give the general solution of the differential equation: \[ y'' + 10y' + 25y = 3xe^{-5x} \] **Options:** a) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - 3x - \frac{3}{2}x^2 \) b) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - \frac{1}{2} e^{-5x} x^3 \) c) \( y = C_1 e^{-5x} + C_2 xe^{-5x} - 3x + \frac{3}{2}x^2 \) d) \( y = C_1 e^{-5x} + C_2 xe^{-5x} + \frac{5}{2} e^{-5x} x^3 \) e) \( y = C_1 e^{-5x} + C_2 xe^{-5x} + \frac{1}{2} e^{-5x} x^3 \) f) None of the above.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,