Give the exact value of sin (157). 4 2 O undefined 2 O-1 00
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Topic Video
Question
![**Trigonometric Function Evaluation**
**Question:**
Give the exact value of \( \sin{\left(\frac{15\pi}{4}\right)} \).
**Answer choices:**
- \( \frac{1}{2} \)
- undefined
- \( \frac{-\sqrt{2}}{2} \)
- \(-1\)
- \(0\)
- \( \frac{-\sqrt{3}}{2} \)
- \( \frac{-1}{2} \)
- \(1\)
- \( \frac{\sqrt{3}}{2} \)
- \( \frac{\sqrt{2}}{2} \)
**Explanation:**
To find the exact value of \( \sin{\left(\frac{15\pi}{4}\right)} \), we can first convert the angle to a simpler equivalent angle within the range \(0\) to \(2\pi \).
### Step 1: Simplify the Angle
\[ \frac{15\pi}{4} \] can be simplified by subtracting \(2\pi\) multiple times (since \(2\pi\) is a complete circle).
\[ \frac{15\pi}{4} - 2\pi = \frac{15\pi}{4} - \frac{8\pi}{4} = \frac{7\pi}{4} \]
The angle \( \frac{7\pi}{4} \) falls within the interval \(0\) to \(2\pi \), which makes it easier to evaluate.
### Step 2: Identify the Quadrant
The angle \( \frac{7\pi}{4} \) is in the fourth quadrant, where sine is negative.
### Step 3: Find the Reference Angle
The reference angle for \( \frac{7\pi}{4} \) is \( 2\pi - \frac{7\pi}{4} = \frac{8\pi}{4} - \frac{7\pi}{4} = \frac{\pi}{4} \).
### Step 4: Evaluate the Sine Function
Using the reference angle \(\frac{\pi}{4}\) and knowing the sine values for standard angles:
\[ \sin{\left(\frac{\pi}{4}\right)} = \frac{\sqrt{2}}{2} \]
Since \( \frac{7\pi}{4](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F21d92c2f-6485-4b0b-a513-40194c3c2abd%2F90ed634b-e614-4952-b73a-d59b4f8f9140%2F8ztws41_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Trigonometric Function Evaluation**
**Question:**
Give the exact value of \( \sin{\left(\frac{15\pi}{4}\right)} \).
**Answer choices:**
- \( \frac{1}{2} \)
- undefined
- \( \frac{-\sqrt{2}}{2} \)
- \(-1\)
- \(0\)
- \( \frac{-\sqrt{3}}{2} \)
- \( \frac{-1}{2} \)
- \(1\)
- \( \frac{\sqrt{3}}{2} \)
- \( \frac{\sqrt{2}}{2} \)
**Explanation:**
To find the exact value of \( \sin{\left(\frac{15\pi}{4}\right)} \), we can first convert the angle to a simpler equivalent angle within the range \(0\) to \(2\pi \).
### Step 1: Simplify the Angle
\[ \frac{15\pi}{4} \] can be simplified by subtracting \(2\pi\) multiple times (since \(2\pi\) is a complete circle).
\[ \frac{15\pi}{4} - 2\pi = \frac{15\pi}{4} - \frac{8\pi}{4} = \frac{7\pi}{4} \]
The angle \( \frac{7\pi}{4} \) falls within the interval \(0\) to \(2\pi \), which makes it easier to evaluate.
### Step 2: Identify the Quadrant
The angle \( \frac{7\pi}{4} \) is in the fourth quadrant, where sine is negative.
### Step 3: Find the Reference Angle
The reference angle for \( \frac{7\pi}{4} \) is \( 2\pi - \frac{7\pi}{4} = \frac{8\pi}{4} - \frac{7\pi}{4} = \frac{\pi}{4} \).
### Step 4: Evaluate the Sine Function
Using the reference angle \(\frac{\pi}{4}\) and knowing the sine values for standard angles:
\[ \sin{\left(\frac{\pi}{4}\right)} = \frac{\sqrt{2}}{2} \]
Since \( \frac{7\pi}{4
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning