### Coordinates and Area of Triangle \( \triangle PQR \) **Problem Statement:** On the set of axes below, the vertices of \( \triangle PQR \) have coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \). A graph is provided to illustrate the triangle. **Graph Description:** - There is a coordinate plane with x and y-axes intersecting at the origin (0,0). - The triangle \( \triangle PQR \) is plotted on the graph with vertices \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \). **Question:** What is the area of \( \triangle PQR \)? **Options:** - A. 20 - B. 10 - C. 50 - D. 25 (correct choice is highlighted) **Calculation:** To find the area of \( \triangle PQR \), we can use the following formula for the area of a triangle given its vertices at \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the given coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \): \[ \text{Area} = \frac{1}{2} \left| (-6)(1 - (-3)) + 2((-3) - 7) + (-1)(7 - 1) \right| \] \[ = \frac{1}{2} \left| (-6)(4) + 2(-10) + (-1)(6) \right| \] \[ = \frac{1}{2} \left| -24 - 20 - 6 \right| \] \[ = \frac{1}{2} \left| -50 \right| \] \[ = \frac{1}{2} \times

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
icon
Concept explainers
Topic Video
Question

Question 10

### Coordinates and Area of Triangle \( \triangle PQR \)

**Problem Statement:**
On the set of axes below, the vertices of \( \triangle PQR \) have coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \). A graph is provided to illustrate the triangle.

**Graph Description:**
- There is a coordinate plane with x and y-axes intersecting at the origin (0,0).
- The triangle \( \triangle PQR \) is plotted on the graph with vertices \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \).

**Question:**
What is the area of \( \triangle PQR \)?

**Options:**
- A. 20
- B. 10
- C. 50
- D. 25 (correct choice is highlighted)

**Calculation:**
To find the area of \( \triangle PQR \), we can use the following formula for the area of a triangle given its vertices at \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\):

\[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \]

Substituting the given coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \):

\[ \text{Area} = \frac{1}{2} \left| (-6)(1 - (-3)) + 2((-3) - 7) + (-1)(7 - 1) \right| \]

\[ = \frac{1}{2} \left| (-6)(4) + 2(-10) + (-1)(6) \right| \]

\[ = \frac{1}{2} \left| -24 - 20 - 6 \right| \]

\[ = \frac{1}{2} \left| -50 \right| \]

\[ = \frac{1}{2} \times
Transcribed Image Text:### Coordinates and Area of Triangle \( \triangle PQR \) **Problem Statement:** On the set of axes below, the vertices of \( \triangle PQR \) have coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \). A graph is provided to illustrate the triangle. **Graph Description:** - There is a coordinate plane with x and y-axes intersecting at the origin (0,0). - The triangle \( \triangle PQR \) is plotted on the graph with vertices \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \). **Question:** What is the area of \( \triangle PQR \)? **Options:** - A. 20 - B. 10 - C. 50 - D. 25 (correct choice is highlighted) **Calculation:** To find the area of \( \triangle PQR \), we can use the following formula for the area of a triangle given its vertices at \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the given coordinates \( P(-6, 7) \), \( Q(2, 1) \), and \( R(-1, -3) \): \[ \text{Area} = \frac{1}{2} \left| (-6)(1 - (-3)) + 2((-3) - 7) + (-1)(7 - 1) \right| \] \[ = \frac{1}{2} \left| (-6)(4) + 2(-10) + (-1)(6) \right| \] \[ = \frac{1}{2} \left| -24 - 20 - 6 \right| \] \[ = \frac{1}{2} \left| -50 \right| \] \[ = \frac{1}{2} \times
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Sample space, Events, and Basic Rules of Probability
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning