f(x)=x^4/4−3x^3+3 a) Determine the intervals on which f is concave up and concave down. f is concave up on:  f is concave down on:  b) Based on your answer to part (a), determine the inflection points of f. Each point should be entered as an ordered pair (that is, in the form (x,y)).  (Separate multiple answers by commas.) c) Find the critical numbers of f and use the Second Derivative Test, when possible, to determine the relative extrema. List only the x-coordinates. Relative maxima at:  (Separate multiple answers by commas.) Relative minima at:  (Separate multiple answers by commas.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

NOTE: When using interval notation in WeBWorK, remember that:
        You use 'INF' for ∞ and '-INF' for −∞.
        And use 'U' for the union symbol.
Enter DNE if an answer does not exist.

f(x)=x^4/4−3x^3+3

a) Determine the intervals on which f is concave up and concave down.
f is concave up on: 
f is concave down on: 

b) Based on your answer to part (a), determine the inflection points of f. Each point should be entered as an ordered pair (that is, in the form (x,y)).
 (Separate multiple answers by commas.)

c) Find the critical numbers of f and use the Second Derivative Test, when possible, to determine the relative extrema. List only the x-coordinates.
Relative maxima at:  (Separate multiple answers by commas.)
Relative minima at:  (Separate multiple answers by commas.)

d) Find the x-value(s) where f′(x) has a relative maximum or minimum.
f′ has relative maxima at:  (Separate multiple answers by commas.)
f′ has relative minima at:  (Separate multiple answers by commas.)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,