Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): int n: the length of array ar • intar[n]: an array of integers • int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 7 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 . • 1 ≤ k ≤ 100 1 ≤ ar[i] ≤ 100 Sample Input STDIN . 63 132612 Sample Output 5 Function Explanation Here are the 5 valid pairs when k = 3: (0,2)→ar[0] + ar[2] = 1+2=3 (0,5) → ar[0] + ar[5] =1+2=3 (1,3) → ar[1] + ar[3] =3+6=9 (2,4)→ar[2] + ar[4] =2+1=3 (4,5) →ar[4] + ar[5] = 1+2=3 n-6, k 3 ar [1, 3, 2, 6, 1, 2] M7890 1 with Ada.Text 10, Ada. Integer_Text_10; use Ada; 4 procedure Solution is --Enter your code here. Read input from STDIN. Print output to STDOUT 10 end Solution More Ada X10
Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1<k<100 • 1 ≤ ar[i] ≤ 100 Sample Input More STDIN 63 1 3 2 6 12 Function n6, k3 ar [1, 3, 2, 6, 1, 2] Sample Output 5 Explanation Here are the 5 valid pairs when k = 3: (0,2) ar[0] + ar[2]=1+2=3 (0,5) ar[0] + ar[5]=1+2=3 • (1,3) ar[1]+ar [3]=3+6=9 (2, 4) ar[2] + ar[4] = 2+1=3 • (4,5)→ ar[4] + ar[5]=1+ 2=3
with Ada.Text_IO, Ada.Integer_Text_IO;
use Ada;
procedure Solution is
-- Enter your code here. Read input from STDIN. Print output to STDOUT
end Solution
Unlock instant AI solutions
Tap the button
to generate a solution