f(t) = cos(2t). Find F(s)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please help
![## Problem 1: Functions and Transformations
**Objective:** Find the functions from Table 6.2.1.
**a.** Given the function \( f(t) = \cos(2t) \), find \( F(s) \).
**b.** For the function \( g(t) = e^{2t} \sin(3t) \), determine \( G(s) \).
**c.** Consider \( H(s) = \frac{3s + 1}{s^2 - 2s + 5} \). Find the corresponding \( h(t) \).
**Explanation:**
- **(a)** involves the cosine function, which is commonly associated with Laplace transforms.
- **(b)** combines an exponential and sine function, implying a transformation using complex exponentials.
- **(c)** shows a rational function in \( s \), which typically involves partial fraction decomposition to revert to time domain.
These problems focus on applying standard transformations to expressions in \( t \) and \( s \), often using Laplace transform tables.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5b55a0fb-5dff-4587-97c0-c3ec381e9c7e%2F7c10150e-18c6-4291-ba20-5a180e468bc5%2Fvtcj5wl_processed.png&w=3840&q=75)
Transcribed Image Text:## Problem 1: Functions and Transformations
**Objective:** Find the functions from Table 6.2.1.
**a.** Given the function \( f(t) = \cos(2t) \), find \( F(s) \).
**b.** For the function \( g(t) = e^{2t} \sin(3t) \), determine \( G(s) \).
**c.** Consider \( H(s) = \frac{3s + 1}{s^2 - 2s + 5} \). Find the corresponding \( h(t) \).
**Explanation:**
- **(a)** involves the cosine function, which is commonly associated with Laplace transforms.
- **(b)** combines an exponential and sine function, implying a transformation using complex exponentials.
- **(c)** shows a rational function in \( s \), which typically involves partial fraction decomposition to revert to time domain.
These problems focus on applying standard transformations to expressions in \( t \) and \( s \), often using Laplace transform tables.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)