From the equations (8) and (9), o 7h+5 IIo 2-(q+1)t-q +1 II-, N-(a+1)t-q/N-(29+1) 1 h=0 k-1 11-o Pa+1)k-(q+1)t-q o 7h+6 II-o 2-(q+1)t-q +1 II-, 2-(4+1)t-q/SN-(1) 1 E1l T, lg+1)k-(4+1)t-q + 1 h=0 k=1 thus -(29+1) > N-(9)· 2-(7a+6) > 2-(6q+5) > N-(5q+4) > N-(4q+3) > N-(34+2) > N-(2q+1) > 2-(9).
From the equations (8) and (9), o 7h+5 IIo 2-(q+1)t-q +1 II-, N-(a+1)t-q/N-(29+1) 1 h=0 k-1 11-o Pa+1)k-(q+1)t-q o 7h+6 II-o 2-(q+1)t-q +1 II-, 2-(4+1)t-q/SN-(1) 1 E1l T, lg+1)k-(4+1)t-q + 1 h=0 k=1 thus -(29+1) > N-(9)· 2-(7a+6) > 2-(6q+5) > N-(5q+4) > N-(4q+3) > N-(34+2) > N-(2q+1) > 2-(9).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show me the steps of determine purple and information is here step by step .it complete
![00 7h+3
II-o 2-(q+1)t-q+1
II-, 2-(a+1)t-q/N-(4g+3)
1
ΣΠ
1-o P(a+1)k-(q+1)t-q + 1
=0
h=0 k=1
thus 2-(5g+4) > S2–(4q+3)•
From the equations (6) and (7),
00 7h+3
IT-o 2-(4+1)t-q+1
II-, 2-(a+1)t-q/S2-(4q+3)
1
ΣΠ
II-o P(a+1)k-(q+1)t-q
>
+ 1
h=0 k=1
=0
00 7h+4
II-o 2-(9+1)t-q +1
II-o 2-(g+1)t-q/52-(3q+2)
1
-ΣΠ
=0
II-o P(a+1)k-(q+1)t-q +1
=0
h=0 k=1
t=D0
thus 2-(49+3) > 2-(3q+2)•
From the equations (7) and (8),
00 7h+4
II-o 2-(4+1)t-q+1
II-o 2-(a+1)t-q/S2-(3q+2)
1
ΣΠ
t=0
>
II-, P(a+1)k-(q+1)t-q+1
t=0
h=0 k=1
00 7h+5
I-, N-(a+1)t-q
II-, ?-(a+1)t-q/S2-(2q+1)
+1
1
ΣΠ
II-o Pa+1)k-(q+1)t-q + 1
h=0 k=1
=0
thus 2-(3q+2) > 2-(2q+1).
From the equations (8) and (9),
0o 7h+5
II-, 2-(a+1)t-q+1
II-, 2-(a+1)t-q/52-(24+1)
1
ΣΠ
t=0
>
II-o P(a+1)k-(q+1)t-q + 1
t=0
h=0 k=1
0o 7h+6
II-, 2-(9+1)t-q+1
II-, 2-(a+1)t-q/N-(4)
1
ΣΠ
t=0
II-o P(a+1)k-(q+1)t-q + 1
=0
h=0 k=1
thus 2-(2q+1) > 2-(q)·
2-(7a+6) > 2-(6q+5) > N-(5q+4) > N-(4q+3) > 2-(34+2) > N-(24+1) > N-1).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F158aed3a-44ed-4147-bb6c-9729d6a7101b%2F0af7049b-bc44-454d-ad30-723f9bf92941%2Fzyraj1_processed.jpeg&w=3840&q=75)
Transcribed Image Text:00 7h+3
II-o 2-(q+1)t-q+1
II-, 2-(a+1)t-q/N-(4g+3)
1
ΣΠ
1-o P(a+1)k-(q+1)t-q + 1
=0
h=0 k=1
thus 2-(5g+4) > S2–(4q+3)•
From the equations (6) and (7),
00 7h+3
IT-o 2-(4+1)t-q+1
II-, 2-(a+1)t-q/S2-(4q+3)
1
ΣΠ
II-o P(a+1)k-(q+1)t-q
>
+ 1
h=0 k=1
=0
00 7h+4
II-o 2-(9+1)t-q +1
II-o 2-(g+1)t-q/52-(3q+2)
1
-ΣΠ
=0
II-o P(a+1)k-(q+1)t-q +1
=0
h=0 k=1
t=D0
thus 2-(49+3) > 2-(3q+2)•
From the equations (7) and (8),
00 7h+4
II-o 2-(4+1)t-q+1
II-o 2-(a+1)t-q/S2-(3q+2)
1
ΣΠ
t=0
>
II-, P(a+1)k-(q+1)t-q+1
t=0
h=0 k=1
00 7h+5
I-, N-(a+1)t-q
II-, ?-(a+1)t-q/S2-(2q+1)
+1
1
ΣΠ
II-o Pa+1)k-(q+1)t-q + 1
h=0 k=1
=0
thus 2-(3q+2) > 2-(2q+1).
From the equations (8) and (9),
0o 7h+5
II-, 2-(a+1)t-q+1
II-, 2-(a+1)t-q/52-(24+1)
1
ΣΠ
t=0
>
II-o P(a+1)k-(q+1)t-q + 1
t=0
h=0 k=1
0o 7h+6
II-, 2-(9+1)t-q+1
II-, 2-(a+1)t-q/N-(4)
1
ΣΠ
t=0
II-o P(a+1)k-(q+1)t-q + 1
=0
h=0 k=1
thus 2-(2q+1) > 2-(q)·
2-(7a+6) > 2-(6q+5) > N-(5q+4) > N-(4q+3) > 2-(34+2) > N-(24+1) > N-1).
![In this work, we deal with the following nonlinear difference equation
Im-(7g+6)
1+II, ?m-(a+1)t-g
where N-(79+6), 2-(7g+5), .., N-1, lo E (0, 00) is investigated.
Im+1 =
m = 0, 1, ...,
(1)
(e) If L(79+7)n+(t-1)q+t → a(t-1)q+t + 0 then 2(7g+7)n+6q+7 + 0 as n → o,
If l(7g+7)n+tg+t → arg+t +0 then 2(7g+7)n+7q+7 + 0 as n → o. t = 1,6.
%3D
(d) We can generate the following formulas:
L(7a+7)n+r(q+1)+s+1 = 2(r-7)(a+1)+s+1 (1-
(IIm-1 2-(mg+m-1)+s)/(r-7)(a+1)
1+ (IIm=1 2-(mq+m-1)+s)
Lm=D1
(--7)(q+1)+s+1
n 7h+r
1
ΣΠ
IIm=1 ?(a+1)t-(mq+m-1)+s +1
h=0 k=1
00 7h+5
II-o 2-(9+1)t-g +1
IL, N-(a+1)t-g/SN-(24+1)
1
ΣΠ
IT-o Pla+1)k-(a+1)e-g +1
a5a+6 = 0 =
(8)
h=0 k=1
Similarly
II,2-(o+1)e-q/S2-(20+1)
II-, 2-(a+1)t-g +1
lim 17g+7)n+6q+7
= lim 2-(9)
1 -
n 7h+6
1
II-0 2-(a+1)k-(9+1)t-g +
h=0 k=1
7h+6
1
A6g+7 =
II-, 2-(9+1)t-a +1
IT-o 2-(9+1)k-(g+1)t-q +1
h=0 k=1
00 7h+6
II, 2-(s+1)-q +1
1
-ΣΠ
(9)
a6g+7 = 0 =
II, Plat1)k-(a+1)t-g +1
h=0 k=1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F158aed3a-44ed-4147-bb6c-9729d6a7101b%2F0af7049b-bc44-454d-ad30-723f9bf92941%2Ft648gqo_processed.png&w=3840&q=75)
Transcribed Image Text:In this work, we deal with the following nonlinear difference equation
Im-(7g+6)
1+II, ?m-(a+1)t-g
where N-(79+6), 2-(7g+5), .., N-1, lo E (0, 00) is investigated.
Im+1 =
m = 0, 1, ...,
(1)
(e) If L(79+7)n+(t-1)q+t → a(t-1)q+t + 0 then 2(7g+7)n+6q+7 + 0 as n → o,
If l(7g+7)n+tg+t → arg+t +0 then 2(7g+7)n+7q+7 + 0 as n → o. t = 1,6.
%3D
(d) We can generate the following formulas:
L(7a+7)n+r(q+1)+s+1 = 2(r-7)(a+1)+s+1 (1-
(IIm-1 2-(mg+m-1)+s)/(r-7)(a+1)
1+ (IIm=1 2-(mq+m-1)+s)
Lm=D1
(--7)(q+1)+s+1
n 7h+r
1
ΣΠ
IIm=1 ?(a+1)t-(mq+m-1)+s +1
h=0 k=1
00 7h+5
II-o 2-(9+1)t-g +1
IL, N-(a+1)t-g/SN-(24+1)
1
ΣΠ
IT-o Pla+1)k-(a+1)e-g +1
a5a+6 = 0 =
(8)
h=0 k=1
Similarly
II,2-(o+1)e-q/S2-(20+1)
II-, 2-(a+1)t-g +1
lim 17g+7)n+6q+7
= lim 2-(9)
1 -
n 7h+6
1
II-0 2-(a+1)k-(9+1)t-g +
h=0 k=1
7h+6
1
A6g+7 =
II-, 2-(9+1)t-a +1
IT-o 2-(9+1)k-(g+1)t-q +1
h=0 k=1
00 7h+6
II, 2-(s+1)-q +1
1
-ΣΠ
(9)
a6g+7 = 0 =
II, Plat1)k-(a+1)t-g +1
h=0 k=1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)