For what values of h is the vector O Span h 1 <0·0} 2 1 2 2 No such values for h. = 1 2 3 h² +5 -1 and h = 1 h = 1 in h can be any real numbers. h = -1 ?

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Please solve this linear algebra multiple choice questions. It deals with linear independence and dependence.

**Educational Website Content**

### Linear Algebra: Vector Span Problem

#### Problem Statement:

For what values of \( h \) is the vector \( \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix} \) in the span of the set \( \left\{ \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \right\} \)?

#### Answer Choices:

1. ⬤ No such values for \( h \).
2. ⭘ \( h = -1 \) and \( h = 1 \)
3. ⭘ \( h \) can be any real number.
4. ⭘ \( h = 1 \)
5. ⭘ \( h = -1 \)

#### Explanation:

The goal is to determine the values of \( h \) that make the vector \( \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix} \) a linear combination of the vectors:

\[ \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \]

To solve this, you would set up the equation:

\[ a \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix}. \]

Then, corresponding components will give you a system of linear equations to solve for \( a \), \( b \), and \( c \) in terms of \( h \).

By
Transcribed Image Text:**Educational Website Content** ### Linear Algebra: Vector Span Problem #### Problem Statement: For what values of \( h \) is the vector \( \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix} \) in the span of the set \( \left\{ \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \right\} \)? #### Answer Choices: 1. ⬤ No such values for \( h \). 2. ⭘ \( h = -1 \) and \( h = 1 \) 3. ⭘ \( h \) can be any real number. 4. ⭘ \( h = 1 \) 5. ⭘ \( h = -1 \) #### Explanation: The goal is to determine the values of \( h \) that make the vector \( \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix} \) a linear combination of the vectors: \[ \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \] To solve this, you would set up the equation: \[ a \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ h^2 + 5 \end{bmatrix}. \] Then, corresponding components will give you a system of linear equations to solve for \( a \), \( b \), and \( c \) in terms of \( h \). By
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education