For this problem, take a look at Figure 2. Assume that the rod is massless, perfectly rigid, and pivoted at point P. When the rod is perfectly horizontal, the angle = 0, the displacement y =0, and the spring is in neither tension nor compression. Gravity acts on the system (e.g. on mass M). We assume that y is a small displacement. A mass M is attached at the end of the rod. k a 0 a F The equation of motion for the system can be derived to be: a 4a MÖ + ak0 = -F- 2Mg M Your tasks: A. Transform the rotational equation of motion, which is in 0, given above, to another variable, y, which is zero at the static equilibrium position. anical system in state space form. Using MATLAB or a calculato alues of INI W 16 [N/m], an C. Derive the response of the system in the Laplace (s) domain. Use the static equilibrium value found in part A (Ost) as the initial value, y(0), for the problem. Assume (0) and the force, F, are both zero. You may treat gravity as g = 10 [m/s2] for ease of calculation. (

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
For this problem, take a look at Figure 2. Assume that the rod is massless, perfectly rigid, and pivoted at point P.
When the rod is perfectly horizontal, the angle 0 = 0, the displacement y = 0, and the spring is in neither tension
nor compression. Gravity acts on the system (e.g. on mass M). We assume that y is a small displacement. A mass
M is attached at the end of the rod.
k
Schen
a
0
a
F
The equation of motion for the system can be derived to be:
a
4aM0+ ak0 =-F-2Mg
T
y
M
Your tasks:
A. Transform the rotational equation of motion, which is in 0, given above, to another variable, y, which is zero
at the static equilibrium position.
onical system in sta bace form. Using MATLAB or a calculator
lues of
INI. W
16 [N/m], and
C. Derive the response of the system in the Laplace (s) domain. Use the static equilibrium value found in part
A (Ost) as the initial value, (0), for the problem. Assume (0) and the force, F, are both zero. You may treat
gravity as g = 10 [m/s²] for ease of calculation. (
Transcribed Image Text:For this problem, take a look at Figure 2. Assume that the rod is massless, perfectly rigid, and pivoted at point P. When the rod is perfectly horizontal, the angle 0 = 0, the displacement y = 0, and the spring is in neither tension nor compression. Gravity acts on the system (e.g. on mass M). We assume that y is a small displacement. A mass M is attached at the end of the rod. k Schen a 0 a F The equation of motion for the system can be derived to be: a 4aM0+ ak0 =-F-2Mg T y M Your tasks: A. Transform the rotational equation of motion, which is in 0, given above, to another variable, y, which is zero at the static equilibrium position. onical system in sta bace form. Using MATLAB or a calculator lues of INI. W 16 [N/m], and C. Derive the response of the system in the Laplace (s) domain. Use the static equilibrium value found in part A (Ost) as the initial value, (0), for the problem. Assume (0) and the force, F, are both zero. You may treat gravity as g = 10 [m/s²] for ease of calculation. (
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 8 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Explain part c please, why do you have flux symbol there? 
Can you show work for limit to get laplace transform or work to get to laplace tranform

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY