For the matrix A, find (if possible) a nonsingular matrix P such that P-'AP is diagonal. (If not possible, enter IMPOSSIBLE.) 12 -4 A = -3 1 P = Verify that P-lAP is a diagonal matrix with the eigenvalues on the main diagonal. p-'AP =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(Linear Algebra)

2.

7.2

Pls help 

thanks

For the matrix \( A \), find (if possible) a nonsingular matrix \( P \) such that \( P^{-1}AP \) is diagonal. (If not possible, enter IMPOSSIBLE.)

\[ 
A = \begin{bmatrix} 
12 & -4 \\ 
-3 & 1 
\end{bmatrix} 
\]

\[ 
P = \begin{bmatrix} 
\phantom{x} & \phantom{x} \\ 
\phantom{x} & \phantom{x} 
\end{bmatrix} 
\]

\[ 
\] 

Verify that \( P^{-1}AP \) is a diagonal matrix with the eigenvalues on the main diagonal.

\[ 
P^{-1}AP = \begin{bmatrix} 
\phantom{x} & \phantom{x} \\ 
\phantom{x} & \phantom{x} 
\end{bmatrix} 
\]

The diagram has placeholders indicating where matrices \( P \) and \( P^{-1}AP \) should be filled in once calculated. Ensure that these matrices follow the arrows that illustrate the transformation sequence.
Transcribed Image Text:For the matrix \( A \), find (if possible) a nonsingular matrix \( P \) such that \( P^{-1}AP \) is diagonal. (If not possible, enter IMPOSSIBLE.) \[ A = \begin{bmatrix} 12 & -4 \\ -3 & 1 \end{bmatrix} \] \[ P = \begin{bmatrix} \phantom{x} & \phantom{x} \\ \phantom{x} & \phantom{x} \end{bmatrix} \] \[ \] Verify that \( P^{-1}AP \) is a diagonal matrix with the eigenvalues on the main diagonal. \[ P^{-1}AP = \begin{bmatrix} \phantom{x} & \phantom{x} \\ \phantom{x} & \phantom{x} \end{bmatrix} \] The diagram has placeholders indicating where matrices \( P \) and \( P^{-1}AP \) should be filled in once calculated. Ensure that these matrices follow the arrows that illustrate the transformation sequence.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,