For the homogeneous Fredholm equation y(x)=2] sin(x+s)y(s5 the'eigenvalue 2 and the corresponding eigen function y(x), involving arbitrary constants A and B, are 2 -2 (a) 2=,y(x)= A(sin x- cos x) (b) a= x)= B(sin x+ cosx)., -2 2 (c) a=, y(x)= B(sin x- cos x) (d) a=,y(x)= A(sin x+cosx) %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

solve both ,correct ,with clean handwritting

The value of 1 for which the following equation has a non-trivial solution
$(x)= 2[ K(x,t)ø(r)dt,0 < x< n
%3D
sin x cos?, 0<xst
where K(x,1)=.
are
cosx sin 1, 1s x< A
(a)
-1,ne N
(b) n -1,ne N
n+
(e) (n+1} -1,neN
(d) (2n+1} - 1, e N
(c)
2
Transcribed Image Text:The value of 1 for which the following equation has a non-trivial solution $(x)= 2[ K(x,t)ø(r)dt,0 < x< n %3D sin x cos?, 0<xst where K(x,1)=. are cosx sin 1, 1s x< A (a) -1,ne N (b) n -1,ne N n+ (e) (n+1} -1,neN (d) (2n+1} - 1, e N (c) 2
For the homogeneous Fredholm equation (x}=1]sin(x+s)y(s d5 the eigenvalue
2 and the corresponding eigen function y(x), involving arbitrary constants
A and B, are
-2
(b) 2=,y(x)= B(sin x+cosx),
2
(a) 1=, y(x)= A(sin x-cos x)
(c) 1=-4,y(x)= B(sin x- cosx) (d) 1 =,
=2,>(x)= A(sin x+cos x)
Transcribed Image Text:For the homogeneous Fredholm equation (x}=1]sin(x+s)y(s d5 the eigenvalue 2 and the corresponding eigen function y(x), involving arbitrary constants A and B, are -2 (b) 2=,y(x)= B(sin x+cosx), 2 (a) 1=, y(x)= A(sin x-cos x) (c) 1=-4,y(x)= B(sin x- cosx) (d) 1 =, =2,>(x)= A(sin x+cos x)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,