Find all periodic solutions of the equation y" − 3y' + 2y = sin x. -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

note that : it asks for all periodic solutions; so i dont htink answering the general solution is enough? help me please!

**Problem Statement:**

Find all periodic solutions of the equation

\[ y'' - 3y' + 2y = \sin x. \]

**Analysis:**

This is a second-order linear non-homogeneous differential equation. We seek solutions \( y(x) \) that are periodic. The equation consists of:

- \( y'' \), the second derivative of \( y \),
- \( y' \), the first derivative of \( y \),
- \( y \) itself,
- The non-homogeneous term \( \sin x \), which is sinusoidal with a known period of \( 2\pi \).

To solve this, we typically find the complementary solution (solution to the associated homogeneous equation) and a particular solution (fitting the non-homogeneous part).
Transcribed Image Text:**Problem Statement:** Find all periodic solutions of the equation \[ y'' - 3y' + 2y = \sin x. \] **Analysis:** This is a second-order linear non-homogeneous differential equation. We seek solutions \( y(x) \) that are periodic. The equation consists of: - \( y'' \), the second derivative of \( y \), - \( y' \), the first derivative of \( y \), - \( y \) itself, - The non-homogeneous term \( \sin x \), which is sinusoidal with a known period of \( 2\pi \). To solve this, we typically find the complementary solution (solution to the associated homogeneous equation) and a particular solution (fitting the non-homogeneous part).
Expert Solution
Step 1: Analysis and Introduction

Given Information:

The differential equation is given as y apostrophe apostrophe minus 3 y apostrophe plus 2 y equals sin open parentheses x close parentheses.

To find:

All periodic solutions to the given equation.

Concept used:

The differential equation is of the form a y apostrophe apostrophe open parentheses x close parentheses plus b y apostrophe open parentheses x close parentheses plus c y open parentheses x close parentheses equals f open parentheses x close parentheses has the auxiliary equation as a m squared plus b m plus c equals 0.

If the auxilary equation has the real and unequal roots, then the complementary equation is y subscript c equals c subscript 1 e to the power of m subscript 1 x end exponent plus c subscript 2 e to the power of m subscript 2 open parentheses x close parentheses end exponent.

The guess for the particular solution when f open parentheses x close parentheses equals sin open parentheses x close parentheses is y subscript p open parentheses x close parentheses equals A space sin open parentheses x close parentheses plus B space cos open parentheses x close parentheses.

The function sine and cosine are periodic in nature with period 2 pi.

Differentiation Formula:

fraction numerator d over denominator d x end fraction open parentheses sin open parentheses x close parentheses close parentheses equals cos open parentheses x close parentheses semicolon space fraction numerator d over denominator d x end fraction open parentheses sin open parentheses x close parentheses close parentheses equals negative cos open parentheses x close parentheses

steps

Step by step

Solved in 5 steps with 33 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,