For the geometric characteristics, traffic conditions (traffic volumes are in vehicles per hour) and signal timing shown below, complete parts A through E for the Northbound and Eastbound approaches. A. Adjust the volumes. B. Find the saturation flow rate. C. Find the degree of saturation. D. Find the theoretical delay for each movement. E. Find the theoretical delay and LOS for the EB and NB approaches. Bus stop 5 stops/hr $12 ft teach 6% HV 400 6% HV 650 100 12 ft each - Isolated signal with random arrivals, AT-3 - No residual demand delay 11 ft each - No bicycles or pedestrians Bus stop 5 stops/hr P C = 60 sec Lost time = 3.5 sec/ 7550 2% HV - G=42 Y=4 G=10; Y=4 G=8 Y=4 G=30 Y=4 Φ1 Φ2 ФЗ Assume the intersection is located at Central Business District (CBD) Assume that both the streets are located on level grades, i.e. G = 0 Assume a PHF = 0.95 Assume random arrival i.e. AT-3 Assume that the intersection is isolated and signal is pre-timed
For the geometric characteristics, traffic conditions (traffic volumes are in vehicles per hour) and signal timing shown below, complete parts A through E for the Northbound and Eastbound approaches. A. Adjust the volumes. B. Find the saturation flow rate. C. Find the degree of saturation. D. Find the theoretical delay for each movement. E. Find the theoretical delay and LOS for the EB and NB approaches. Bus stop 5 stops/hr $12 ft teach 6% HV 400 6% HV 650 100 12 ft each - Isolated signal with random arrivals, AT-3 - No residual demand delay 11 ft each - No bicycles or pedestrians Bus stop 5 stops/hr P C = 60 sec Lost time = 3.5 sec/ 7550 2% HV - G=42 Y=4 G=10; Y=4 G=8 Y=4 G=30 Y=4 Φ1 Φ2 ФЗ Assume the intersection is located at Central Business District (CBD) Assume that both the streets are located on level grades, i.e. G = 0 Assume a PHF = 0.95 Assume random arrival i.e. AT-3 Assume that the intersection is isolated and signal is pre-timed
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question

Transcribed Image Text:For the geometric characteristics, traffic conditions (traffic volumes are in vehicles per hour) and
signal timing shown below, complete parts A through E for the Northbound and Eastbound
approaches.
A. Adjust the volumes.
B. Find the saturation flow rate.
C. Find the degree of saturation.
D. Find the theoretical delay for each movement.
E. Find the theoretical delay and LOS for the EB and NB approaches.
Bus stop
5 stops/hr
$12 ft
teach
6% HV
400
6% HV
650
100
12 ft
each
- Isolated signal with
random arrivals, AT-3
- No residual demand delay
11 ft
each
- No bicycles or pedestrians
Bus stop
5 stops/hr
P
C = 60 sec
Lost time = 3.5 sec/
7550
2% HV
-
G=42
Y=4
G=10; Y=4
G=8
Y=4
G=30
Y=4
Φ1
Φ2
ФЗ
Assume the intersection is located at Central Business District (CBD)
Assume that both the streets are located on level grades, i.e. G = 0
Assume a PHF = 0.95
Assume random arrival i.e. AT-3
Assume that the intersection is isolated and signal is pre-timed
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 1 steps with 1 images

Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning