For the function f(x) = T € [0, 1 ) sin (2πx) if x E 0 if x coefficients) of all the three half-range FS. L calculate the general terms (the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
the 3rd half range FS is Periodic
For the function ƒ(x) =
I € (0, 1)
€ [₁,1)
0 if x E
sin (27x) if x =
coefficients) of all the three half-range FS.
calculate the general terms (the
Transcribed Image Text:For the function ƒ(x) = I € (0, 1) € [₁,1) 0 if x E sin (27x) if x = coefficients) of all the three half-range FS. calculate the general terms (the
Expert Solution
Step 1: Introduction

The function f open parentheses x close parentheses on stretchy left square bracket 0 comma 1 stretchy right parenthesis is defined as follows.

f open parentheses x close parentheses equals open curly brackets table row 0 cell text if end text space x element of stretchy left square bracket 0 comma 1 half stretchy right parenthesis end cell row cell sin open parentheses 2 straight pi straight x close parentheses end cell cell text if end text space x element of stretchy left square bracket 1 half comma 1 stretchy right parenthesis end cell end table close

We need to find all half range Fourier series.

We know that the half range Fourier sine series of a function f open parentheses x close parentheses defined on open square brackets 0 comma L close square brackets is written as follows.

f open parentheses x close parentheses equals sum from n equals 1 to infinity of b subscript n sin open parentheses fraction numerator n straight pi straight x over denominator L end fraction close parentheses, where b subscript n equals 2 over L integral subscript 0 superscript L f open parentheses x close parentheses s in open parentheses fraction numerator n straight pi straight x over denominator L end fraction close parentheses d x for all n greater or equal than 1.

We know that the half range Fourier cosine series of a function f open parentheses x close parentheses defined on open square brackets 0 comma L close square brackets is written as follows.

f open parentheses x close parentheses equals a subscript 0 over 2 plus sum from n equals 1 to infinity of a subscript n cos open parentheses fraction numerator n straight pi straight x over denominator L end fraction close parentheses, where a subscript 0 equals 2 over L integral subscript 0 superscript L f open parentheses x close parentheses d x and a subscript n equals 2 over L integral subscript 0 superscript L f open parentheses x close parentheses cos open parentheses fraction numerator n straight pi straight x over denominator L end fraction close parentheses d x for all n greater or equal than 1.

steps

Step by step

Solved in 5 steps with 34 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,