For the following concentration cell, use the Nernst equation to determine the expected voltage.  Also indicate the oxidation reaction, the reduction reaction, the cell reaction, and the overall expected EMF of the cell using the tables from powerpoint slides 11 and 12 and the Nernst equation.  Once you have determined the cell reaction, write the conventional cell notation.   Zn and Zn+2 (0.25M) mixed with Cu and Cu+2 (0.35M)

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

For the following concentration cell, use the Nernst equation to determine the expected voltage.  Also indicate the oxidation reaction, the reduction reaction, the cell reaction, and the overall expected EMF of the cell using the tables from powerpoint slides 11 and 12 and the Nernst equation.  Once you have determined the cell reaction, write the conventional cell notation.

 

Zn and Zn+2 (0.25M) mixed with Cu and Cu+2 (0.35M)

# Standard Electrode Potentials

## Table 21.2: Standard Electrode (Half-Cell) Potentials (298 K)

This table comprises standard electrode potentials (\(E^\circ\)) of various half-reactions at 298 K (25°C). Each half-reaction is written as a reduction, and the \(E^\circ\) values indicate the propensity of the species to gain electrons (be reduced).

### Explanation of Columns

- **Half-Reaction**: Depicts the reduction processes, consisting of oxidized and reduced forms of chemical species.
- **\(E^\circ\) (V)**: Standard electrode potential values in volts.

### Half-Reactions and Potentials

1. \( \text{SO}_4^{2-} (\text{aq}) + 4\text{H}^+ (\text{aq}) + 2\text{e}^- \rightarrow \text{SO}_2 (\text{g}) + 2\text{H}_2\text{O} (\text{l}) \) 
   - \( +0.20 \)

2. \( \text{Cu}^{2+} (\text{aq}) + \text{e}^- \rightarrow \text{Cu}^+ (\text{aq}) \) 
   - \( +0.15 \)

3. \( \text{Sn}^{4+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Sn}^{2+} (\text{aq}) \)
   - \( +0.15 \)

4. \( 2\text{H}^+ (\text{aq}) + 2\text{e}^- \rightarrow \text{H}_2 (\text{g}) \) 
   - \( 0.00 \)

5. \( \text{Pb}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Pb} (\text{s}) \) 
   - \( -0.13 \)

6. \( \text{Sn}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Sn} (\text{s}) \) 
   - \( -0.14 \)

7. \( \text{Ni}^{2+} (\text{aq}) + 5\text{H}^
Transcribed Image Text:# Standard Electrode Potentials ## Table 21.2: Standard Electrode (Half-Cell) Potentials (298 K) This table comprises standard electrode potentials (\(E^\circ\)) of various half-reactions at 298 K (25°C). Each half-reaction is written as a reduction, and the \(E^\circ\) values indicate the propensity of the species to gain electrons (be reduced). ### Explanation of Columns - **Half-Reaction**: Depicts the reduction processes, consisting of oxidized and reduced forms of chemical species. - **\(E^\circ\) (V)**: Standard electrode potential values in volts. ### Half-Reactions and Potentials 1. \( \text{SO}_4^{2-} (\text{aq}) + 4\text{H}^+ (\text{aq}) + 2\text{e}^- \rightarrow \text{SO}_2 (\text{g}) + 2\text{H}_2\text{O} (\text{l}) \) - \( +0.20 \) 2. \( \text{Cu}^{2+} (\text{aq}) + \text{e}^- \rightarrow \text{Cu}^+ (\text{aq}) \) - \( +0.15 \) 3. \( \text{Sn}^{4+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Sn}^{2+} (\text{aq}) \) - \( +0.15 \) 4. \( 2\text{H}^+ (\text{aq}) + 2\text{e}^- \rightarrow \text{H}_2 (\text{g}) \) - \( 0.00 \) 5. \( \text{Pb}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Pb} (\text{s}) \) - \( -0.13 \) 6. \( \text{Sn}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Sn} (\text{s}) \) - \( -0.14 \) 7. \( \text{Ni}^{2+} (\text{aq}) + 5\text{H}^
# Standard Electrode Potentials - Part 1

## Table 21.2: Standard Electrode (Half-Cell) Potentials (298 K)

### Half-Reactions and Their E° Values

- **F₂ (g) + 2e⁻ → 2F⁻ (aq)**: E° = +2.87 V
- **O₃ (g) + 2H⁺ (aq) + 2e⁻ → O₂ (g) + H₂O (l)**: E° = +2.07 V
- **Co³⁺ (aq) + e⁻ → Co²⁺ (aq)**: E° = +1.82 V
- **H₂O₂ (aq) + 2H⁺ (aq) + 2e⁻ → 2H₂O (l)**: E° = +1.78 V
- **PbO₂ (s) + 4H⁺ (aq) + SO₄²⁻ (aq) + 2e⁻ → PbSO₄ (s) + 2H₂O (l)**: E° = +1.67 V
- **Ce⁴⁺ (aq) + e⁻ → Ce³⁺ (aq)**: E° = +1.61 V
- **MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)**: E° = +1.51 V
- **Au³⁺ (aq) + 3e⁻ → Au (s)**: E° = +1.50 V
- **Cl₂ (g) + 2e⁻ → 2Cl⁻ (aq)**: E° = +1.36 V
- **Cr₂O₇²⁻ (aq) + 14H⁺ (aq) + 6e⁻ → 2Cr³⁺ (aq) + 7H₂O (l)**: E° = +1.33 V
- **O₂ (g) + 4H⁺ (aq) + 4e⁻ → 2H₂O (l)**: E° = +1.23 V
-
Transcribed Image Text:# Standard Electrode Potentials - Part 1 ## Table 21.2: Standard Electrode (Half-Cell) Potentials (298 K) ### Half-Reactions and Their E° Values - **F₂ (g) + 2e⁻ → 2F⁻ (aq)**: E° = +2.87 V - **O₃ (g) + 2H⁺ (aq) + 2e⁻ → O₂ (g) + H₂O (l)**: E° = +2.07 V - **Co³⁺ (aq) + e⁻ → Co²⁺ (aq)**: E° = +1.82 V - **H₂O₂ (aq) + 2H⁺ (aq) + 2e⁻ → 2H₂O (l)**: E° = +1.78 V - **PbO₂ (s) + 4H⁺ (aq) + SO₄²⁻ (aq) + 2e⁻ → PbSO₄ (s) + 2H₂O (l)**: E° = +1.67 V - **Ce⁴⁺ (aq) + e⁻ → Ce³⁺ (aq)**: E° = +1.61 V - **MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)**: E° = +1.51 V - **Au³⁺ (aq) + 3e⁻ → Au (s)**: E° = +1.50 V - **Cl₂ (g) + 2e⁻ → 2Cl⁻ (aq)**: E° = +1.36 V - **Cr₂O₇²⁻ (aq) + 14H⁺ (aq) + 6e⁻ → 2Cr³⁺ (aq) + 7H₂O (l)**: E° = +1.33 V - **O₂ (g) + 4H⁺ (aq) + 4e⁻ → 2H₂O (l)**: E° = +1.23 V -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Electrochemical Cells
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY