For the first few problems in this set, let *-0 -0 - -) -- F₁ = F₂ F3 y² F₁ = F5 = 22 1. Let S denote the unit sphere cos u sin v sin u sin v COS U T(u, v) = and compute (a) fs F₁ ds (b) ff F2 ds . (c) ff F3 d5 (d) ffs F4 d5 (e) ffs F5-ds 3 (a) ff F₁ d5 . (b) ff F2 ds (c) ff F3 d5 . (d) ffs F₁-dS (e) fs F5-dS . 0 < u < 2π, 050 Σπ Y -X 0 2. Let S denote the square with corners (1, 1, 1), (-1, 1, 1), (1,-1, 1), and (-1,-1, 1), oriented so that the top of S points in the direction of the positive Z-axis, and compute

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

If you could work number 2 I w

For the first few problems in this set, let

\[ \mathbf{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{F}_3 = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix} \quad \mathbf{F}_4 = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_5 = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \]

1. Let \( S \) denote the unit sphere

\[ \mathbf{T}(u, v) = \begin{pmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{pmatrix}, \quad 0 \leq u \leq 2\pi, \quad 0 \leq v \leq \pi \]

and compute

(a) \(\iint_{S} \mathbf{F}_1 \cdot d\vec{S}\)

(b) \(\iint_{S} \mathbf{F}_2 \cdot d\vec{S}\)

(c) \(\iint_{S} \mathbf{F}_3 \cdot d\vec{S}\)

(d) \(\iint_{S} \mathbf{F}_4 \cdot d\vec{S}\)

(e) \(\iint_{S} \mathbf{F}_5 \cdot d\vec{S}\)

2. Let \( S \) denote the square with corners \((1, 1, 1), (-1, 1, 1), (1, -1, 1),\) and \((-1, -1, 1)\), oriented so that the top of \( S \) points in the direction of the positive Z-axis, and compute

(a) \(\iint_{S} \mathbf{F}_1 \cdot d\vec{S}\)

(b) \(\iint_{S} \mathbf{F}_2 \cdot d\vec{S}\)

(c) \(\
Transcribed Image Text:For the first few problems in this set, let \[ \mathbf{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{F}_3 = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix} \quad \mathbf{F}_4 = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_5 = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \] 1. Let \( S \) denote the unit sphere \[ \mathbf{T}(u, v) = \begin{pmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{pmatrix}, \quad 0 \leq u \leq 2\pi, \quad 0 \leq v \leq \pi \] and compute (a) \(\iint_{S} \mathbf{F}_1 \cdot d\vec{S}\) (b) \(\iint_{S} \mathbf{F}_2 \cdot d\vec{S}\) (c) \(\iint_{S} \mathbf{F}_3 \cdot d\vec{S}\) (d) \(\iint_{S} \mathbf{F}_4 \cdot d\vec{S}\) (e) \(\iint_{S} \mathbf{F}_5 \cdot d\vec{S}\) 2. Let \( S \) denote the square with corners \((1, 1, 1), (-1, 1, 1), (1, -1, 1),\) and \((-1, -1, 1)\), oriented so that the top of \( S \) points in the direction of the positive Z-axis, and compute (a) \(\iint_{S} \mathbf{F}_1 \cdot d\vec{S}\) (b) \(\iint_{S} \mathbf{F}_2 \cdot d\vec{S}\) (c) \(\
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 25 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,