For the DE: dy/dx=2x-y y(0)=2 with h=0.2, solve for y using each method below in the range of 0 <= x <= 3: Q1) Using Matlab to employ the Euler Method (Sect 2.4) Q2) Using Matlab to employ the Improved Euler Method (Sect 2.5 close all clear all % Let's program exact soln for i=1:5 x_exact(i)=0.5*i-0.5; y_exact(i)=-x_exact(i)-1+exp(x_exact(i)); end plot(x_exact,y_exact,'b') % now for Euler's h=0.5 x_EM(1)=0; y_EM(1)=0; for i=2:5 x_EM(i)=x_EM(i-1)+h; y_EM(i)=y_EM(i-1)+(h*(x_EM(i-1)+y_EM(i-1))); end hold on plot (x_EM,y_EM,'r') % Improved Euler's Method h=0.5 x_IE(1)=0; y_IE(1)=0; for i=2:1:5 kA=x_IE(i-1)+y_IE(i-1); u=y_IE(i-1)+h*kA; x_IE(i)=x_IE(i-1)+h; kB=x_IE(i)+u; k=(kA+kB)/2; y_IE(i)=y_IE(i-1)+h*k; end hold on plot(x_IE,y_IE,'k')
For the DE: dy/dx=2x-y y(0)=2 with h=0.2, solve for y using each method below in the range of 0 <= x <= 3:
Q1) Using Matlab to employ the Euler Method (Sect 2.4)
Q2) Using Matlab to employ the Improved Euler Method (Sect 2.5
close all
clear all
% Let's program exact soln
for i=1:5
x_exact(i)=0.5*i-0.5;
y_exact(i)=-x_exact(i)-1+exp(x_exact(i));
end
plot(x_exact,y_exact,'b')
% now for Euler's
h=0.5
x_EM(1)=0;
y_EM(1)=0;
for i=2:5
x_EM(i)=x_EM(i-1)+h;
y_EM(i)=y_EM(i-1)+(h*(x_EM(i-1)+y_EM(i-1)));
end
hold on
plot (x_EM,y_EM,'r')
% Improved Euler's Method
h=0.5
x_IE(1)=0;
y_IE(1)=0;
for i=2:1:5
kA=x_IE(i-1)+y_IE(i-1);
u=y_IE(i-1)+h*kA;
x_IE(i)=x_IE(i-1)+h;
kB=x_IE(i)+u;
k=(kA+kB)/2;
y_IE(i)=y_IE(i-1)+h*k;
end
hold on
plot(x_IE,y_IE,'k')

Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images









