For silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0). a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum? b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum? c) What limits optical absorption in silicon at photon energies near the band gap?
For silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0). a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum? b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum? c) What limits optical absorption in silicon at photon energies near the band gap?
Related questions
Question
For silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0).
a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum?
b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum?
c) What limits optical absorption in silicon at photon energies near the band gap?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps