For positive numbers a < b, the pulse function is defined as 0, x < a 1, a sx < b 0, x 2 b Pab(x) = H(x – a) – H(x – b) = x 2 0 is the Heaviside function. lo, ´1, where H(x) x < 0 (a) Sketch the graph of the pulse function. (b) Find the following limits: (i) lim Pub(x) (ii) lim Pa,(x) ха * a* (iii) lim P(x) * b+ (iv) lim Pa(x) b- (c) Discuss the continuity of the pulse function. 1 (d) Why is U(x) = Pab(x) called the unit pulse function? b - a
For positive numbers a < b, the pulse function is defined as 0, x < a 1, a sx < b 0, x 2 b Pab(x) = H(x – a) – H(x – b) = x 2 0 is the Heaviside function. lo, ´1, where H(x) x < 0 (a) Sketch the graph of the pulse function. (b) Find the following limits: (i) lim Pub(x) (ii) lim Pa,(x) ха * a* (iii) lim P(x) * b+ (iv) lim Pa(x) b- (c) Discuss the continuity of the pulse function. 1 (d) Why is U(x) = Pab(x) called the unit pulse function? b - a
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![For positive numbers a < b, the pulse
function is defined as
0, x < a
1, a sx < b
0, x 2 b
Pab(x) = H(x – a) – H(x – b) =
x 2 0
is the Heaviside function.
lo,
´1,
where H(x)
x < 0
(a) Sketch the graph of the pulse function.
(b) Find the following limits:
(i) lim Pub(x)
(ii) lim Pa,(x)
ха
* a*
(iii) lim P(x)
* b+
(iv) lim Pa(x)
b-
(c) Discuss the continuity of the pulse function.
1
(d) Why is U(x) =
Pab(x) called the unit pulse function?
b
- a](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdc718426-3933-41df-a660-5fd083b0d2bd%2F2bb3189d-ef88-4f5a-ad5e-ffe71a890817%2F976uqn.png&w=3840&q=75)
Transcribed Image Text:For positive numbers a < b, the pulse
function is defined as
0, x < a
1, a sx < b
0, x 2 b
Pab(x) = H(x – a) – H(x – b) =
x 2 0
is the Heaviside function.
lo,
´1,
where H(x)
x < 0
(a) Sketch the graph of the pulse function.
(b) Find the following limits:
(i) lim Pub(x)
(ii) lim Pa,(x)
ха
* a*
(iii) lim P(x)
* b+
(iv) lim Pa(x)
b-
(c) Discuss the continuity of the pulse function.
1
(d) Why is U(x) =
Pab(x) called the unit pulse function?
b
- a
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)