For one binomial experiment, ni = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. O The Student's t. The number of trials is sufficiently large. O The standard normal. We assume the population distributions are approximately normal. O The Student's t. We assume the population distributions are approximately normal. O The standard normal. The number of trials is sufficiently large. (c) State the hypotheses. O Ho: P1 = P2i H1: P1 * P2 O Ho: P1 = P2i Hị: P1 < P2 O Ho: P1 < Pzi Hị: P1 = P2 O Họ: P1 = P2i Hị: P1 > P2 (d) Compute p1 -p^2- Compute the corresponding sample distribution value. (Test the difference p1 - P2. Do not use rounded values. Round your final answer to two decimal places.) (e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.) (f) Conclude the test. O At the a = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. O At the a = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. O At the a = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. O At the a = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
For one binomial experiment, ni = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. O The Student's t. The number of trials is sufficiently large. O The standard normal. We assume the population distributions are approximately normal. O The Student's t. We assume the population distributions are approximately normal. O The standard normal. The number of trials is sufficiently large. (c) State the hypotheses. O Ho: P1 = P2i H1: P1 * P2 O Ho: P1 = P2i Hị: P1 < P2 O Ho: P1 < Pzi Hị: P1 = P2 O Họ: P1 = P2i Hị: P1 > P2 (d) Compute p1 -p^2- Compute the corresponding sample distribution value. (Test the difference p1 - P2. Do not use rounded values. Round your final answer to two decimal places.) (e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.) (f) Conclude the test. O At the a = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. O At the a = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. O At the a = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. O At the a = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Concept explainers
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
Topic Video
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman