For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 70 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. The Student's t. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal.The standard normal. The number of trials is sufficiently large. (c) State the hypotheses. H0: p1 = p2; H1: p1 > p2H0: p1 = p2; H1: p1 ≠ p2 H0: p1 = p2; H1: p1 < p2H0: p1 < p2; H1: p1 = p2 (d) Compute p̂1 - p̂2. p̂1 - p̂2 = Compute the corresponding sample distribution value. (Test the difference p1 − p2. Do not use rounded values. Round your final answer to two decimal places.) (e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.) (f) Conclude the test. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (g) Interpret the results. Fail to reject the null hypothesis, there is insufficient evidence that the probabilities of success for the two binomial experiments differ.Reject the null hypothesis, there is insufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ. Reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.Fail to reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 70 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. The Student's t. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal.The standard normal. The number of trials is sufficiently large. (c) State the hypotheses. H0: p1 = p2; H1: p1 > p2H0: p1 = p2; H1: p1 ≠ p2 H0: p1 = p2; H1: p1 < p2H0: p1 < p2; H1: p1 = p2 (d) Compute p̂1 - p̂2. p̂1 - p̂2 = Compute the corresponding sample distribution value. (Test the difference p1 − p2. Do not use rounded values. Round your final answer to two decimal places.) (e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.) (f) Conclude the test. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (g) Interpret the results. Fail to reject the null hypothesis, there is insufficient evidence that the probabilities of success for the two binomial experiments differ.Reject the null hypothesis, there is insufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ. Reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.Fail to reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
For one binomial experiment,
n1 = 75
binomial trials produced
r1 = 45
successes. For a second independent binomial experiment,
n2 = 100
binomial trials produced
r2 = 70
successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ.
(a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.)
(b) Check Requirements: What distribution does the sample test statistic follow? Explain.
(c) State the hypotheses.
(d) Compute p̂1 - p̂2.
p̂1 - p̂2 =
Compute the corresponding sample distribution value. (Test the difference p1 − p2. Do not use rounded values. Round your final answer to two decimal places.)
(e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)
(f) Conclude the test.
(g) Interpret the results.
(b) Check Requirements: What distribution does the sample test statistic follow? Explain.
The Student's t. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal.The standard normal. The number of trials is sufficiently large.
(c) State the hypotheses.
H0: p1 = p2; H1: p1 > p2H0: p1 = p2; H1: p1 ≠ p2 H0: p1 = p2; H1: p1 < p2H0: p1 < p2; H1: p1 = p2
(d) Compute p̂1 - p̂2.
p̂1 - p̂2 =
Compute the corresponding sample distribution value. (Test the difference p1 − p2. Do not use rounded values. Round your final answer to two decimal places.)
(e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)
(f) Conclude the test.
At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
(g) Interpret the results.
Fail to reject the null hypothesis, there is insufficient evidence that the probabilities of success for the two binomial experiments differ.Reject the null hypothesis, there is insufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ. Reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.Fail to reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman