For many years, MOS devices were scaled tosmaller and smaller dimensions without changingthe power supply voltage. Suppose that the widthW, length L, and oxide thickness Tox of a MOS transistor are all reduced by a factor of 2. Assume thatVT N , vGS, and vDS remain the same. (a) Calculatethe ratio of the drain current of the scaled device tothat of the original device. (b) By what factor hasthe power dissipation changed? (c) By what factorhas the value of the total gate capacitance changed?(d) By what factor has the circuit delay Tchanged?
For many years, MOS devices were scaled tosmaller and smaller dimensions without changingthe power supply voltage. Suppose that the widthW, length L, and oxide thickness Tox of a MOS transistor are all reduced by a factor of 2. Assume thatVT N , vGS, and vDS remain the same. (a) Calculatethe ratio of the drain current of the scaled device tothat of the original device. (b) By what factor hasthe power dissipation changed? (c) By what factorhas the value of the total gate capacitance changed?(d) By what factor has the circuit delay Tchanged?
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
For many years, MOS devices were scaled to
smaller and smaller dimensions without changing
the power supply voltage. Suppose that the width
W, length L, and oxide thickness Tox of a MOS transistor are all reduced by a factor of 2. Assume thatVT N , vGS, and vDS remain the same. (a) Calculate
the ratio of the drain current of the scaled device to
that of the original device. (b) By what factor has
the power dissipation changed? (c) By what factor
has the value of the total gate capacitance changed?
(d) By what factor has the circuit delay T
changed?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,