For Exercises 9–22, use long division to divide. 9. (3x - 11r - 10) (x – 4)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

I need help to do question 9, 13, 17, 19, and question 43 on section 2.3.

Chapter 2 Poly
280
3.
-4
25.-4
-2 -25
4.
24
1
-4
1-6
28. (6x+25x - 19) ÷ (x + 5)
30. (2x2 + x- 21) (x - 3)
(x + 1)
27. (4x + 15x + 1) + (* + 6)
29. (5x-17x-12) (*-4)
31. (4-&r-3-Sr) (+2)
4x-25-58e+ 232+198x-63
21+13x-3x' – 58x – 20x + 24
34.
32. (-5+ 2x + 5x- 2x)
|
X - 2
x-81
36.
x + 3
33.
1-3
2+32
35.
よ+2
38. (-5x – 18r + 63x + 128x 60) ÷
37. (2x- 7- 56x+ 37x + 84) (*-
2.
f(x)
Objective 3: Apply the Remainder and Factor Theorems
39. The value (-6)%3D39 for a polynomial f(x). What can
has a
40. Given a polynomial f(x), the quotient
x - 2
f(x)
remainder of 12. What is the value of f(2)? E
be concluded about the remainder or quotient of
x + 6
41. Given f(x) = 2x- 5x + - 7,
a. Evaluate f(4).
b. Determine the remainder when f(x) is divided by
(x-4).
42. Given g(x) = -3x + 2x* + 6x² – x + 4,
a. Evaluate g(2).
b. Determine the remainder when g(x) is divided by
(x – 2).
G OL TORG
For Exercises 43-46, use the remainder theorem to evaluate the polynomial for the given values of x. (See Example 6)
43.) f(x) = 2x + x - 49x + 79x + 15
44. g(x) = 3x - 22x + 51x – 42x + 8
bivib o t
vc. g(1)
a. f(-1)
b. f(3)
c. f(4)
45. h(x) = 5x – 4x - 15x + 12
noizivib gnol o
b oti
d. f
a. g(-1)
b. g(2)
d. g
%3D
46. k(x) = 2x - ² – 14x + 7
a. h(1)
4
b. h
c. h(V3)
d. h(-1)
a. k(2)
b. k
c. k(V7)
d. k(-2)
For Exercises 47-54, use the remainder theorem to determine if the given number c is a zero of the polynomial. (See Example 7)
с.
2/ib guol saD -
10
3.
7.2 L
13r
10
48. g(r) = 2x + 13r – 10
%3D
10r2
19r
4/3
215
Transcribed Image Text:Chapter 2 Poly 280 3. -4 25.-4 -2 -25 4. 24 1 -4 1-6 28. (6x+25x - 19) ÷ (x + 5) 30. (2x2 + x- 21) (x - 3) (x + 1) 27. (4x + 15x + 1) + (* + 6) 29. (5x-17x-12) (*-4) 31. (4-&r-3-Sr) (+2) 4x-25-58e+ 232+198x-63 21+13x-3x' – 58x – 20x + 24 34. 32. (-5+ 2x + 5x- 2x) | X - 2 x-81 36. x + 3 33. 1-3 2+32 35. よ+2 38. (-5x – 18r + 63x + 128x 60) ÷ 37. (2x- 7- 56x+ 37x + 84) (*- 2. f(x) Objective 3: Apply the Remainder and Factor Theorems 39. The value (-6)%3D39 for a polynomial f(x). What can has a 40. Given a polynomial f(x), the quotient x - 2 f(x) remainder of 12. What is the value of f(2)? E be concluded about the remainder or quotient of x + 6 41. Given f(x) = 2x- 5x + - 7, a. Evaluate f(4). b. Determine the remainder when f(x) is divided by (x-4). 42. Given g(x) = -3x + 2x* + 6x² – x + 4, a. Evaluate g(2). b. Determine the remainder when g(x) is divided by (x – 2). G OL TORG For Exercises 43-46, use the remainder theorem to evaluate the polynomial for the given values of x. (See Example 6) 43.) f(x) = 2x + x - 49x + 79x + 15 44. g(x) = 3x - 22x + 51x – 42x + 8 bivib o t vc. g(1) a. f(-1) b. f(3) c. f(4) 45. h(x) = 5x – 4x - 15x + 12 noizivib gnol o b oti d. f a. g(-1) b. g(2) d. g %3D 46. k(x) = 2x - ² – 14x + 7 a. h(1) 4 b. h c. h(V3) d. h(-1) a. k(2) b. k c. k(V7) d. k(-2) For Exercises 47-54, use the remainder theorem to determine if the given number c is a zero of the polynomial. (See Example 7) с. 2/ib guol saD - 10 3. 7.2 L 13r 10 48. g(r) = 2x + 13r – 10 %3D 10r2 19r 4/3 215
Concept Connections
1. Given the division algorithm, identify the polynomials representing the dividend, divisor, quotient, and remainder.
f(x) = d(x) q(x) + r(x)
2x-5x-6x+1
%3D
2. Given
21+x-3 +
--
use the division algorithm to check the result.
ォ-3
x-3'
3. The remainder theorem indicates that if a polynomial f(x) is divided by x
- c, then the remainder is
of f(x).
4. Given a polynomial fx), the factor theorem indicates that if f(c)
Furthermore, if x- c is a factor of f(x), then f(c)
= 0, then x -c is a
%3D
5. Answer true or false. If V5 is a zero of a polynomial, then (x- V5) is a factor of the polynomial.
6. Answer true or false. If (r + 3) is a factor of a polynomial, then 3 is a zero of the polynomial.
Objective 1: Divide Polynomials Using Long Division
For Exercises 7-8, (See Example 1)
a. Use long division to divide.
b. Identify the dividend, divisor, quotient, and remainder.
c. Check the result from part (a) with the division algorithm.
7. (6x + 9x + 5) ÷ (2x – 5)
8. (12x + 10x+ 3) ÷ (3x + 4)
For Exercises 9-22, use long division to divide. (See Examples 1-3)
9. (3x - 11x - 10) ÷ (x – 4)
10. (2x – 7x - 65) (x – 5)
|
11. (8 + 30x - 27x - 12x + 4xr*) ÷ (x + 2)
12. (-48 - 28r + 20x + 17x + 3x*) ÷ (x + 3)
13. (-20x + 6x - 16) (2x + 4)
14. (-60x + 8x* - 108) (2 – 6)
15. (x+ 4x + 18x- 20x - 10) ÷ (x + 5)
16. (x- 2x+ x'- 8r + 18) ÷ (r - 3)
17.
6x + 3x - 7x + 6x - 5
12x- 4x + 13x² + 2x + 1
18.
17.)
2x + x- 3
3x - x + 4
|
x-27
19.
x - 3
x' + 64
20.
x+ 4,
21. (5x - 2x + 3) (2x - 1)
22. (2r + x + 1) ÷ (3x + 1)
Transcribed Image Text:Concept Connections 1. Given the division algorithm, identify the polynomials representing the dividend, divisor, quotient, and remainder. f(x) = d(x) q(x) + r(x) 2x-5x-6x+1 %3D 2. Given 21+x-3 + -- use the division algorithm to check the result. ォ-3 x-3' 3. The remainder theorem indicates that if a polynomial f(x) is divided by x - c, then the remainder is of f(x). 4. Given a polynomial fx), the factor theorem indicates that if f(c) Furthermore, if x- c is a factor of f(x), then f(c) = 0, then x -c is a %3D 5. Answer true or false. If V5 is a zero of a polynomial, then (x- V5) is a factor of the polynomial. 6. Answer true or false. If (r + 3) is a factor of a polynomial, then 3 is a zero of the polynomial. Objective 1: Divide Polynomials Using Long Division For Exercises 7-8, (See Example 1) a. Use long division to divide. b. Identify the dividend, divisor, quotient, and remainder. c. Check the result from part (a) with the division algorithm. 7. (6x + 9x + 5) ÷ (2x – 5) 8. (12x + 10x+ 3) ÷ (3x + 4) For Exercises 9-22, use long division to divide. (See Examples 1-3) 9. (3x - 11x - 10) ÷ (x – 4) 10. (2x – 7x - 65) (x – 5) | 11. (8 + 30x - 27x - 12x + 4xr*) ÷ (x + 2) 12. (-48 - 28r + 20x + 17x + 3x*) ÷ (x + 3) 13. (-20x + 6x - 16) (2x + 4) 14. (-60x + 8x* - 108) (2 – 6) 15. (x+ 4x + 18x- 20x - 10) ÷ (x + 5) 16. (x- 2x+ x'- 8r + 18) ÷ (r - 3) 17. 6x + 3x - 7x + 6x - 5 12x- 4x + 13x² + 2x + 1 18. 17.) 2x + x- 3 3x - x + 4 | x-27 19. x - 3 x' + 64 20. x+ 4, 21. (5x - 2x + 3) (2x - 1) 22. (2r + x + 1) ÷ (3x + 1)
Expert Solution
Step 1

“Since you have asked multiple questions, we will solve the first question for you. If you
want any specific question to be solved then please specify the question number or post
only that question.”

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Area of a Circle
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning