For each integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b. We proceed by induction. Since 8 = 3·1+5.1, the statement is true for n = 8. Assume for each integer i with 8 ≤ i ≤ k, where k ≥ 8 is an arbitrary integer, that there are non- negative integers s and t such that i = 3s + 5t. Consider the integer k + 1. We show that there are nonnegative integers x and y such that k + 1 = 3x + 5y. Since 9 = 3 ⋅ 3 + 5 · 0 and 10 = 3.0+ 5 · 2, this is true if k + 1 = 9 and k + 1 = 10. Hence, we may assume that k + 1 ≥ 11. Thus, 8 ≤ (k + 1) − 3 < k. By the induction hypothesis, there are non- negative integers a and b such that (k+ 1) - 3 = 3a + 5b and so k + 1 = 3(a + 1) + 5b. Letting x = a + 1 and y = b, we have the desired conclusion. By the Strong Principle of Mathematical Induction, for every integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b.
For each integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b. We proceed by induction. Since 8 = 3·1+5.1, the statement is true for n = 8. Assume for each integer i with 8 ≤ i ≤ k, where k ≥ 8 is an arbitrary integer, that there are non- negative integers s and t such that i = 3s + 5t. Consider the integer k + 1. We show that there are nonnegative integers x and y such that k + 1 = 3x + 5y. Since 9 = 3 ⋅ 3 + 5 · 0 and 10 = 3.0+ 5 · 2, this is true if k + 1 = 9 and k + 1 = 10. Hence, we may assume that k + 1 ≥ 11. Thus, 8 ≤ (k + 1) − 3 < k. By the induction hypothesis, there are non- negative integers a and b such that (k+ 1) - 3 = 3a + 5b and so k + 1 = 3(a + 1) + 5b. Letting x = a + 1 and y = b, we have the desired conclusion. By the Strong Principle of Mathematical Induction, for every integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please explain the highlighted part in more detail, for example what indicates that k+1 is greater than or equal to 11?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 6 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,