For any prime p, establish each of the assertions below: (a) t(p!) = 2t((p – 1)!). (b) o(p!) = (p + 1)o ((p – 1)!). (c) $(p!) = (p – 1)ø((p – 1)!). %3D %3D %3D |

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

7.3#11

**Euler's Generalization of Fermat's Theorem**

1. **Theorem 5**: If \( m \) and \( n \) are relatively prime positive integers, prove that:
   \[
   m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}
   \]

2. **Problem 6**: Fill in missing details in Euler’s theorem proof. Let \( p \) be a prime divisor of \( n \) and \(\gcd(a, p) = 1\). By Fermat’s theorem:
   \[
   a^{p-1} \equiv 1 \pmod{p}
   \]
   Therefore,
   \[
   a^{p(p-1)} \equiv 1 \pmod{p^2}
   \]
   By induction,
   \[
   a^{p^{k-1}(p-1)} \equiv 1 \pmod{p^k}
   \]
   For some integer \( t \), this becomes:
   \[
   a^{\phi(n)} \equiv 1 \pmod{n}
   \]

3. **Problem 7**: Find the units digit of \( 3^{100} \) using Euler’s theorem.

4. **Problem 8**:
   - (a) Linear congruence problem. Show assenedtion for:
     \[
     ax \equiv b \pmod{n}
     \]
   - (b) Solve:
     \[
     3x \equiv 5 \pmod{26}, \quad 13x \equiv 2 \pmod{40}, \quad 10x \equiv 21 \pmod{49}
     \]

5. **Problem 9**: Use Euler’s theorem to evaluate \( 2^{1000000} \pmod{77} \).

6. **Problem 10**: For any integer \( a \), show \( a \) and \( a_{n+1} \) have the last digit.

7. **Problem 11**: Assertions for any prime \( p \):
   - (a) \( \tau(p!) = 2\tau((p-1)!) \)
   - (b) \( \sigma(p!) = (p+1)\sigma((p
Transcribed Image Text:**Euler's Generalization of Fermat's Theorem** 1. **Theorem 5**: If \( m \) and \( n \) are relatively prime positive integers, prove that: \[ m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn} \] 2. **Problem 6**: Fill in missing details in Euler’s theorem proof. Let \( p \) be a prime divisor of \( n \) and \(\gcd(a, p) = 1\). By Fermat’s theorem: \[ a^{p-1} \equiv 1 \pmod{p} \] Therefore, \[ a^{p(p-1)} \equiv 1 \pmod{p^2} \] By induction, \[ a^{p^{k-1}(p-1)} \equiv 1 \pmod{p^k} \] For some integer \( t \), this becomes: \[ a^{\phi(n)} \equiv 1 \pmod{n} \] 3. **Problem 7**: Find the units digit of \( 3^{100} \) using Euler’s theorem. 4. **Problem 8**: - (a) Linear congruence problem. Show assenedtion for: \[ ax \equiv b \pmod{n} \] - (b) Solve: \[ 3x \equiv 5 \pmod{26}, \quad 13x \equiv 2 \pmod{40}, \quad 10x \equiv 21 \pmod{49} \] 5. **Problem 9**: Use Euler’s theorem to evaluate \( 2^{1000000} \pmod{77} \). 6. **Problem 10**: For any integer \( a \), show \( a \) and \( a_{n+1} \) have the last digit. 7. **Problem 11**: Assertions for any prime \( p \): - (a) \( \tau(p!) = 2\tau((p-1)!) \) - (b) \( \sigma(p!) = (p+1)\sigma((p
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,