For an index set I and indexed families of sets {Ai | i ∈ I } and {Bi | i ∈ I }. For each of the following statements, either prove it or find a counterexample. (∩i∈I Ai ) ∪ (∩i∈I Bi ) = ∩i∈I (Ai ∪ Bi ) (∩i∈I Ai ) ∪ (∩i∈I Bi) ⊆ ∩i∈I (Ai ∪ Bi ) ∪i∈I (Ai ∩ Bi ) = (∪i∈I Ai ) ∩ (∪i∈I Bi )

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Plz solve or none. 

 

Please help me defend this proof:

For an index set I and indexed families of sets {Ai | i ∈ I } and {Bi | i ∈ I }. For each of the following statements, either prove it or find a counterexample.

  1. (∩i∈I Ai ) ∪ (∩i∈I Bi ) = ∩i∈I (Ai ∪ Bi )
  2. (∩i∈I Ai ) ∪ (∩i∈I Bi) ⊆ ∩i∈I (Ai ∪ Bi )
  3. ∪i∈I (Ai ∩ Bi ) = (∪i∈I Ai ) ∩ (∪i∈I Bi )
  4. ∪i∈I (Ai ∩ Bi ) ⊆ (∪i∈I Ai ) ∩ (∪i∈I Bi )
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,