“float” on water, but a single-edge blade will sink. Assume that the surface tension forces act at an angle relative to the water sur- face as shown in Fig. P1.124. (a) The mass of the double-edge blade is 0.64 × 10-3 kg, and the total length of its sides is 206 mm. Determine the value of 0 required to maintain equilibrium be- tween the blade weight and the resultant surface tension force. (b) The mass of the single-edge blade is 2.61 × 10-³ kg, and the total length of its sides is 154 mm. Explain why this blade sinks. Support your answer with the necessary calculations.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
1.124 ▸ WILEY As shown in Video V1.9, surface tension forces
can be strong enough to allow a double-edge steel razor blade to
"float" on water, but a single-edge blade will sink. Assume that the
surface tension forces act at an angle 0 relative to the water sur-
face as shown in Fig. P1.124. (a) The mass of the double-edge
blade is 0.64 × 10-³ kg, and the total length of its sides is 206
mm. Determine the value of 0 required to maintain equilibrium be-
tween the blade weight and the resultant surface tension force.
(b) The mass of the single-edge blade is 2.61 × 10-³ kg, and the
total length of its sides is 154 mm. Explain why this blade sinks.
Support your answer with the necessary calculations.
Blade
Surface tension
force
K
Transcribed Image Text:1.124 ▸ WILEY As shown in Video V1.9, surface tension forces can be strong enough to allow a double-edge steel razor blade to "float" on water, but a single-edge blade will sink. Assume that the surface tension forces act at an angle 0 relative to the water sur- face as shown in Fig. P1.124. (a) The mass of the double-edge blade is 0.64 × 10-³ kg, and the total length of its sides is 206 mm. Determine the value of 0 required to maintain equilibrium be- tween the blade weight and the resultant surface tension force. (b) The mass of the single-edge blade is 2.61 × 10-³ kg, and the total length of its sides is 154 mm. Explain why this blade sinks. Support your answer with the necessary calculations. Blade Surface tension force K
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY