Find u(x, t) for the string of length L = 1 and c² = 16 when the initial velocity is zero and the initial deflection f(x) is as follows:

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find u(x, t) for the string of length L = 1 and c2 = 16 when the initial velocity is zero and the initial deflection f(x) is as follows:
1
1
1
1
1
1
1. и(х, t) —
(V2-1)sin(πx) cos (4πί) +si-(2πx) σoS (8 πί) +y2 + 1)sin (3 π) cos (1 2π) +
...
1
1
(V2 - 1)sin(rx)cos(4rt)-
si=(2rx)cos(8nt) + (/2 + 1)sin(3xx)cos(12rt) –
9.
2. и(х, t) %—
...
1
(V2.
1
(V2+ 1)sin(3ax)cos(12zt) + ...
1
3. и(х, t) —
- 1)sin(πx)cos (4πί) + si= (2πx) cos (8 πί) +
1
4. и(х, t) —
1
:- 1 )sin(rx)cos(4nt) – si=(2x)cos(87t) +V2 + 1)sin(3x)cos(12rt)
Choose the correct answer.
Transcribed Image Text:Find u(x, t) for the string of length L = 1 and c2 = 16 when the initial velocity is zero and the initial deflection f(x) is as follows: 1 1 1 1 1 1 1. и(х, t) — (V2-1)sin(πx) cos (4πί) +si-(2πx) σoS (8 πί) +y2 + 1)sin (3 π) cos (1 2π) + ... 1 1 (V2 - 1)sin(rx)cos(4rt)- si=(2rx)cos(8nt) + (/2 + 1)sin(3xx)cos(12rt) – 9. 2. и(х, t) %— ... 1 (V2. 1 (V2+ 1)sin(3ax)cos(12zt) + ... 1 3. и(х, t) — - 1)sin(πx)cos (4πί) + si= (2πx) cos (8 πί) + 1 4. и(х, t) — 1 :- 1 )sin(rx)cos(4nt) – si=(2x)cos(87t) +V2 + 1)sin(3x)cos(12rt) Choose the correct answer.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,