Given an acceleration function a(t)=<0,-32>, find velocity and position functions, given that v(0)=<10,50> and r(0)=<0,0>

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem:

Given an acceleration function \(a(t) = \langle 0, -32 \rangle\), find the velocity and position functions, given that 

\[ v(0) = \langle 10, 50 \rangle \quad \text{and} \quad r(0) = \langle 0, 0 \rangle. \]

### Solution:

This problem involves finding the velocity and position vectors from the given acceleration vector. Here’s the step-by-step process to solve it:

#### Step 1: Find the Velocity Function

The acceleration \(a(t) = \langle 0, -32 \rangle\) gives the rate of change of velocity.

\[ v(t) = \int a(t) \, dt \]

Integrate each component of \(a(t)\):

\[ 
a(t) = \langle 0, -32 \rangle 
\]

\[ 
\int 0 \, dt = C_1 \quad \text{and} \quad \int -32 \, dt = -32t + C_2 
\]

So,

\[ 
v(t) = \langle C_1, -32t + C_2 \rangle 
\]

Using the given initial condition \(v(0) = \langle 10, 50 \rangle\), we can find \(C_1\) and \(C_2\):

\[ 
v(0) = \langle C_1, C_2 \rangle = \langle 10, 50 \rangle 
\]

Thus,

\[ 
C_1 = 10 \quad \text{and} \quad C_2 = 50 
\]

So, the velocity function is:

\[ 
v(t) = \langle 10, -32t + 50 \rangle 
\]

#### Step 2: Find the Position Function

The velocity \(v(t) = \langle 10, -32t + 50 \rangle\) gives the rate of change of position.

\[ 
r(t) = \int v(t) \, dt 
\]

Integrate each component of \(v(t)\):

\[ 
\int 10 \, dt = 10t + D_1 \quad \text{and} \quad \int (-32t + 50) \,
Transcribed Image Text:### Problem: Given an acceleration function \(a(t) = \langle 0, -32 \rangle\), find the velocity and position functions, given that \[ v(0) = \langle 10, 50 \rangle \quad \text{and} \quad r(0) = \langle 0, 0 \rangle. \] ### Solution: This problem involves finding the velocity and position vectors from the given acceleration vector. Here’s the step-by-step process to solve it: #### Step 1: Find the Velocity Function The acceleration \(a(t) = \langle 0, -32 \rangle\) gives the rate of change of velocity. \[ v(t) = \int a(t) \, dt \] Integrate each component of \(a(t)\): \[ a(t) = \langle 0, -32 \rangle \] \[ \int 0 \, dt = C_1 \quad \text{and} \quad \int -32 \, dt = -32t + C_2 \] So, \[ v(t) = \langle C_1, -32t + C_2 \rangle \] Using the given initial condition \(v(0) = \langle 10, 50 \rangle\), we can find \(C_1\) and \(C_2\): \[ v(0) = \langle C_1, C_2 \rangle = \langle 10, 50 \rangle \] Thus, \[ C_1 = 10 \quad \text{and} \quad C_2 = 50 \] So, the velocity function is: \[ v(t) = \langle 10, -32t + 50 \rangle \] #### Step 2: Find the Position Function The velocity \(v(t) = \langle 10, -32t + 50 \rangle\) gives the rate of change of position. \[ r(t) = \int v(t) \, dt \] Integrate each component of \(v(t)\): \[ \int 10 \, dt = 10t + D_1 \quad \text{and} \quad \int (-32t + 50) \,
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning