Find the variation of the displacement with time, x(t), of a damped single- degree-of-freedom system with m=10 kg, k=10,000 N/m, and 3=0.1 for the following initial conditions:
Find the variation of the displacement with time, x(t), of a damped single- degree-of-freedom system with m=10 kg, k=10,000 N/m, and 3=0.1 for the following initial conditions:
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
ANSWER problem 2.121.Use x(0)=.1m and x(dot)(0)=2 as a template for answering the problem stated problem 2.121. And note theta tells you which quadrant the tan inverse value will fall in so for example theta with two positive values so the angle inputted will be in quadrant 1 (in the unit circle).Negative value from tan inverse means subtract the inverse tan value from larger value and positive value means add to the smaller value. EX: quad 2 (in the unit circle) smaller value is 90 and larger value is 180
![**Problem 2.121: Variation of Displacement**
Find the **variation of the displacement** with time, \( x(t) \), of a damped single-degree-of-freedom system with \( m = 10 \, \text{kg} \), \( k = 10{,}000 \, \text{N/m} \), and \( \zeta = 0.1 \) for the following initial conditions:
(a) \( x(0) = 0.2 \, \text{m}, \hspace{0.2cm} \dot{x}(0) = 0 \)
(b) \( x(0) = -0.2 \, \text{m}, \hspace{0.2cm} \dot{x}(0) = 0 \)
(c) \( x(0) = 0, \hspace{0.2cm} \dot{x}(0) = 0.2 \, \left( \frac{\text{m}}{\text{sec}} \right) \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F20000a63-5a8a-4b5e-adbd-85ecbf6c298b%2Fea7486da-9580-4184-beb9-e5ba48288b23%2F81oezdq_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 2.121: Variation of Displacement**
Find the **variation of the displacement** with time, \( x(t) \), of a damped single-degree-of-freedom system with \( m = 10 \, \text{kg} \), \( k = 10{,}000 \, \text{N/m} \), and \( \zeta = 0.1 \) for the following initial conditions:
(a) \( x(0) = 0.2 \, \text{m}, \hspace{0.2cm} \dot{x}(0) = 0 \)
(b) \( x(0) = -0.2 \, \text{m}, \hspace{0.2cm} \dot{x}(0) = 0 \)
(c) \( x(0) = 0, \hspace{0.2cm} \dot{x}(0) = 0.2 \, \left( \frac{\text{m}}{\text{sec}} \right) \)
![### Single-Degree-of-Freedom System Analysis
**Parameters and Constants:**
- **Mass, \( m \):** 1 kg
- **Damping coefficient, \( c \):** 5 N-sec/m
- **Stiffness, \( k \):** 16 N/m
For the system described, the response is analyzed for the following initial conditions:
#### Initial Conditions:
(a) \( x(0) = 0.1 \, m \), \( \dot{x}(0) = 2 \, \frac{m}{sec} \)
(b) \( x(0) = -0.1 \, m \), \( \dot{x}(0) = -2 \, \frac{m}{sec} \)
**Differential Equation of Motion:**
\[ m\ddot{x} + c\dot{x} + kx = 0 \]
\[ \to \ddot{x} + 5\dot{x} + 16x = 0 \]
\[ \to x = \frac{-5 \pm \sqrt{25 - 4(16)}}{2} = \frac{-5 \pm i\sqrt{39}}{2} \]
#### System Response:
\[ x(t) = X_0 e^{-\zeta\omega_nt} \sin(\omega_d t + \phi_0) \]
Where:
\[ X_0 = \frac{\sqrt{x_0^2 \omega_n^2 + \dot{x_0}^2 + 2\zeta\omega_nx_0\dot{x_0}}}{\omega_d} \]
\[ \phi_0 = \tan^{-1} \left( \frac{x_0 \omega_d}{\dot{x_0} + \zeta\omega_nx_0} \right) \]
### Parameters Calculation:
- **Natural Frequency:**
\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{16}{1}} = 4 \, \frac{rad}{sec} \]
- **Critical Damping Coefficient:**
\[ c_c = 2\sqrt{km} = 2\sqrt{16(1)} = 8 \, \frac{N \cdot sec}{m} \]
- **Damping Ratio:**
\[ \zeta](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F20000a63-5a8a-4b5e-adbd-85ecbf6c298b%2Fea7486da-9580-4184-beb9-e5ba48288b23%2Fgg3dpmb_processed.png&w=3840&q=75)
Transcribed Image Text:### Single-Degree-of-Freedom System Analysis
**Parameters and Constants:**
- **Mass, \( m \):** 1 kg
- **Damping coefficient, \( c \):** 5 N-sec/m
- **Stiffness, \( k \):** 16 N/m
For the system described, the response is analyzed for the following initial conditions:
#### Initial Conditions:
(a) \( x(0) = 0.1 \, m \), \( \dot{x}(0) = 2 \, \frac{m}{sec} \)
(b) \( x(0) = -0.1 \, m \), \( \dot{x}(0) = -2 \, \frac{m}{sec} \)
**Differential Equation of Motion:**
\[ m\ddot{x} + c\dot{x} + kx = 0 \]
\[ \to \ddot{x} + 5\dot{x} + 16x = 0 \]
\[ \to x = \frac{-5 \pm \sqrt{25 - 4(16)}}{2} = \frac{-5 \pm i\sqrt{39}}{2} \]
#### System Response:
\[ x(t) = X_0 e^{-\zeta\omega_nt} \sin(\omega_d t + \phi_0) \]
Where:
\[ X_0 = \frac{\sqrt{x_0^2 \omega_n^2 + \dot{x_0}^2 + 2\zeta\omega_nx_0\dot{x_0}}}{\omega_d} \]
\[ \phi_0 = \tan^{-1} \left( \frac{x_0 \omega_d}{\dot{x_0} + \zeta\omega_nx_0} \right) \]
### Parameters Calculation:
- **Natural Frequency:**
\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{16}{1}} = 4 \, \frac{rad}{sec} \]
- **Critical Damping Coefficient:**
\[ c_c = 2\sqrt{km} = 2\sqrt{16(1)} = 8 \, \frac{N \cdot sec}{m} \]
- **Damping Ratio:**
\[ \zeta
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY