The parameter of a single-degree-of-freedom system are given by m=1 kg, c=5 N-sec/m, and k=16 N/m. Find the response of the system for the following initial conditions:

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

ANSWER problem 2.149& 2.150.Use x(0)=.1m and x(dot)(0)=2 as a template for answering the problem stated problem. And note theta tells you which quadrant the tan inverse value will fall in so for example theta with two positive values so the angle inputted will be in quadrant 1 (in the unit circle).Negative value from tan inverse means subtract the inverse tan value from larger value and positive value means add to the smaller value. EX: quad 2 (in the unit circle) smaller value is 90 and larger value is 180

### System Response Analysis

The parameters of a single-degree-of-freedom system are given by:
- Mass, \( m = 1 \, \text{kg} \),
- Damping coefficient, \( c = 5 \, \text{N-sec/m} \),
- Stiffness, \( k = 16 \, \text{N/m} \).

We need to find the response of the system for the following initial conditions:

#### Initial Conditions

**Condition (a):**
- \( x(0) = 0.1 \, \text{m} \)
- \( \dot{x}(0) = 2 \, \text{m/sec} \)

**Condition (b):**
- \( x(0) = -0.1 \, \text{m} \)
- \( \dot{x}(0) = -2 \, \text{m/sec} \)

---

### System Equations

The system equation is:
\[ m\ddot{x} + c\dot{x} + kx = 0 \]

Simplifying, we get:
\[ \ddot{x} + 5\dot{x} + 16x = 0 \]

The characteristic equation is:
\[ x = \frac{-5 \pm \sqrt{25 - 4(16)}}{2} = \frac{-5 \pm i\sqrt{39}}{2} \]

### General Solution

The response function is:
\[ x(t) = X_0 e^{-\zeta \omega_n t} \sin(\omega_d t + \phi_0) \]

Where:
- \( X_0 = \frac{\sqrt{x_0^2 \omega^2_n + \dot{x}_0^2 + 2\zeta \omega_n x_0 \dot{x}_0}}{\omega_d} \)
- \( \phi_0 = \tan^{-1}\left(\frac{x_0 \omega_d}{\dot{x}_0 + \zeta \omega_n x_0} \right) \)

### Natural Frequency and Damping

- Natural Frequency: \( \omega_n = \sqrt{\frac{k}{m}} = 4 \, \text{rad/sec} \)
- Critical Damping Coefficient: \( c_c = 2\sqrt{km} = 8 \, \text{N-sec/m
Transcribed Image Text:### System Response Analysis The parameters of a single-degree-of-freedom system are given by: - Mass, \( m = 1 \, \text{kg} \), - Damping coefficient, \( c = 5 \, \text{N-sec/m} \), - Stiffness, \( k = 16 \, \text{N/m} \). We need to find the response of the system for the following initial conditions: #### Initial Conditions **Condition (a):** - \( x(0) = 0.1 \, \text{m} \) - \( \dot{x}(0) = 2 \, \text{m/sec} \) **Condition (b):** - \( x(0) = -0.1 \, \text{m} \) - \( \dot{x}(0) = -2 \, \text{m/sec} \) --- ### System Equations The system equation is: \[ m\ddot{x} + c\dot{x} + kx = 0 \] Simplifying, we get: \[ \ddot{x} + 5\dot{x} + 16x = 0 \] The characteristic equation is: \[ x = \frac{-5 \pm \sqrt{25 - 4(16)}}{2} = \frac{-5 \pm i\sqrt{39}}{2} \] ### General Solution The response function is: \[ x(t) = X_0 e^{-\zeta \omega_n t} \sin(\omega_d t + \phi_0) \] Where: - \( X_0 = \frac{\sqrt{x_0^2 \omega^2_n + \dot{x}_0^2 + 2\zeta \omega_n x_0 \dot{x}_0}}{\omega_d} \) - \( \phi_0 = \tan^{-1}\left(\frac{x_0 \omega_d}{\dot{x}_0 + \zeta \omega_n x_0} \right) \) ### Natural Frequency and Damping - Natural Frequency: \( \omega_n = \sqrt{\frac{k}{m}} = 4 \, \text{rad/sec} \) - Critical Damping Coefficient: \( c_c = 2\sqrt{km} = 8 \, \text{N-sec/m
**Problem 2.149 & 2.150: Response of Damped System**

Determine the values of ζ (damping ratio), ωₙ (natural frequency), and the free-vibration response of the following viscously damped systems when:

\( x_0 = 0.1 \, \text{(m)}, \quad \dot{x}_0 = 10 \, \left(\frac{\text{m}}{\text{sec}}\right) \)

(a) \( m = 10 \, \text{kg}, \quad c = 150 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \)

(b) \( m = 10 \, \text{kg}, \quad c = 200 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \)

(c) \( m = 10 \, \text{kg}, \quad c = 250 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \)
Transcribed Image Text:**Problem 2.149 & 2.150: Response of Damped System** Determine the values of ζ (damping ratio), ωₙ (natural frequency), and the free-vibration response of the following viscously damped systems when: \( x_0 = 0.1 \, \text{(m)}, \quad \dot{x}_0 = 10 \, \left(\frac{\text{m}}{\text{sec}}\right) \) (a) \( m = 10 \, \text{kg}, \quad c = 150 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \) (b) \( m = 10 \, \text{kg}, \quad c = 200 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \) (c) \( m = 10 \, \text{kg}, \quad c = 250 \, \left(\frac{\text{N} \cdot \text{sec}}{\text{m}}\right), \quad k = 1{,}000 \, \left(\frac{\text{N}}{\text{m}}\right) \)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY